
ASYMPTOTIC RAY METHOD
IN SEISMOLOGY

A TUTORIAL

Johana Brokešová
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Preface

The topic of this course is the asymptotic ray theory for propagation of
high-frequency seismic body waves in elastic structures. The course notes
have been created in the framework of the Marie Curie Research Training
Network (RTN) SPICE (Seismic wave propagation and imaging in complex
media: a European network) in the 6th Framework Program of the European
Commission. The focus of the network is research and training in computa-
tional seismology with the aim to develop, verify and apply computational
tools for wave propagation and imaging problems at all scales.

This manuscript has developed from material I have presented in the
2nd SPICE RTN Workshop held in Smolenice, Slovakia, September 4 - 9,
2005. It has also grown out of my experience teaching the regular course
on the asymptotic ray theory at Charles University in Prague. The book
is set up with the aim of introducing the basic elements of the ray theory
and providing a brief self-consistent overview of the use of the ray method to
model seismic wavefields both in isotropic and anisotropic media. The goal I
was trying to reach is to provide the reader with basics of the theory behind
the method and to explain, without discussing some practical details, the
basic procedure for obtaining ray synthetic seismograms.

This book is intended as a text for a graduate or research level course. A
certain basic knowledge of applied mathematics and linear algebra is needed
to understand the calculus. Some knowledge of seismology and wave propa-
gation is expected. I assume that the student taking a course that uses this
book has had a course on continuum mechanics.

Many excellent books cover the subject comprehensively, especially re-
cent books by Červený (2001) and Chapman (2004). Unlike these in-depth,
state-of-art texts, the presented course notes aim to provide a concise guide
to the method for students who are not familiar with it. The theory pre-
sented here is mainly after the Červený book, from which several figures
are also taken. Some of the figures are taken from lecture notes by Pšenč́ık
(1994).

The theory is presented for general 3D structures. Two and one-dimen-
sional media are understood only as simplified, special cases (although, for
the sake of simplicity, some figures are plotted in 2D). However, the book is
complemented by a CD containing the numerical code ZRAYAMP, designed
for ray computations in 1D models only. This is because of the general
decision, accepted in the 1st SPICE RTN Workshop (Venice, Italy, 2004),
to treat only 1D models in numerical exercises. This should allow students
to more easily compare certain aspects of individual numerical techniques
presented on the RTN workshops. The program ZRAYAMP allows for cal-
culations in a spherically symmetrical structure. The program is not meant
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Asymptotic ray method in seismology: A tutorial

only as a training tool to elucidate the use of the ray method on simple
examples, but it may even be used to solve some simple problems belonging
to global seismology. Several numerical examples, involving models, input
data and results, are included in the CD and described in Chapter 8. The
code is also supplemented by a user’s guide and troubleshooting tips.

This manuscript has been prepared with the help of several individuals. I
am greatly indebted to my students and colleagues from Charles University
for valuable suggestions and constructive criticism. Special thanks go to
Jaromı́r Janský, who provided the computer code for numerical exercises,
and Frantǐsek Gallovič for his help in preparing numerical examples included
to demonstrate functions of the code. A grateful acknowledgement goes to
Hearn Gadbois for his kind help with the English language revision of the
manuscript. Jakub Veĺımský provided invaluable help in LaTeX setting of
the book.
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1 Introduction

In modern theoretical seismology, there is a need to compute seismic wave-
fields in increasingly more complex 2D and mainly 3D structures. The
propagation of seismic waves in inhomogeneous, laterally varying 2D/3D
layered/blocky structures is a very complicated process.

In such complex structures, analytical solutions are not known and many
standard modeling techniques, developed for 1D models, are not applicable.
Common approaches to calculate synthetic seismograms in such types of
structures are:

1. Methods based on direct numerical solution of the elastodynamic equa-
tion (EDE), like finite-difference (FDM, see Moczo et al., 2004) or
finite-element methods.

2. Approximate high-frequency methods using asymptotic solutions of
EDE. The most important representative of these techniques is the
ray method (RM) which is based on the asymptotic ray theory. The
solution is usually sought in the form of the so-called ray series or even
only the leading term of such a series is taken into account (zero-order
ray solution).

In these lecture notes, the focus is on the use of the standard zero-
order ray method to calculate seismic wavefields (travel times, amplitudes,
synthetic seismograms, etc.).

The RM is very general and flexible in the following sense: it is applicable
both in isotropic and anisotropic models containing curved interfaces, sepa-
rating layers or blocks situated arbitrarily in space. The model parameters
inside layers/blocks may also vary both in vertical and lateral directions. The
RM is applicable to arbitrary source-receiver configurations (it is also easy
to implement finite-extent sources simulating arbitrarily oriented faults).

Let’s start with a qualitative comparison of the RM and the FDM, the
two representative techniques applicable to complex 2D/3D models. (For
simple models, many other modeling techniques could be brought to com-
parison with RM, however, advantages of RM are more considerable when
dealing with 2D/3D models.)

It is well known that the FDM is numerically expensive for large models
and/or high frequencies. The size of the model is ‘measured’ in wavelength.
In this context, by ‘large model’ we understand the model with an extent
exceeding, let us say, several wavelengths. On the other hand, large models
and high frequencies do not represent any problem for RM and the higher
the frequency is, the more accurate the solution could, in principle, be.

It has been already mentioned that the RM is applicable to very general
complex structures. This is true but under one condition: the models must
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Introduction

be smooth, not changing rapidly with respect to the wavelength. To be
more precise, the model suitable for the RM can contain a reasonable number
of boundaries (interfaces), separating relatively thick layers or larger blocks,
across which the model parameters are discontinuous. However, fine layering
and rapid model parameter changes inside layers and blocks as well as rapid
changes in the shape of interfaces are undesirable. The presence of these
structural features may easily lead to a significant accuracy decrease or to
chaotic behavior of rays which usually results in total break-down of the
method.

The most important difference between FDM and RM concerns the com-
pleteness of the resulting synthetic wavefield. FDM yields a complete wave-
field which is sometimes called the ‘exact solution’. Of course, it suffers from
various numerical problems and artifacts of the method, so that it may be
far from being exact. Nevertheless, the FDM solution should contain all the
possible waves propagating in the given structure within the given time win-
dow. In contrast, the RM yields only the high-frequency approximation
of the wavefield which is, in principle, incomplete. (In this respect, the
FDM wavefield is closer to reality than the RM wavefield).

Let us clarify, in what sense the RM wavefield is incomplete. It contains
only those parts of the wavefield which correspond in their form (and pro-
perties) to the ray ansatz (the form of the trial solution, see later). As it is
shown in Tab. 1, when dealing with the standard zero-order ray wavefield,
the solution does not include:

• any near-field terms (similar to those known from the Stokes solution
in homogeneous isotropic medium)

• any surface waves, leaky waves and other waves of interference charac-
ter (waves in waveguides, etc.)

• any head-waves and other types of higher-order waves (e.g., reflections
from higher-order interfaces, etc.)

• any inhomogeneous (evanescent) waves or waves originated from these
waves, e.g. at some structural interface (postcritically transmitted
waves, tunneling waves in a high-velocity layer, pseudospherical waves,
etc.)

• waves in dissipative media

• diffracted waves.

There are possibilities to model, at least in part, some of the above types
of waves using higher-order ray method or certain generalized approaches.

3
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However, in the standard zero-order RM, the wavefield consists of far-field
body waves only. Moreover, in practice, we can always consider only a
finite number of a priori chosen the so-called elementary waves (individual
reflected or transmitted waves, possibly converted from one type to another).
Thus, in complex structures with layers and blocks, even the body-wavefield
is incomplete.

Finally, the RM fails in certain singular regions like shadow zones (mainly
in the vicinity of the boundary between illuminated and shadow regions),
at caustic points (where the ray amplitude is infinite) and in the vicinity
of caustics, in critical regions where rays reflected with the angle close to
the critical one emerge at the surface, etc. In anisotropic media, there are
moreover certain singular directions, characterized by the coupling of the
quasi-shear waves, in which the RM breaks down. These singular situations
are briefly discussed in this book.

Most of the items mentioned in the above comparison between RM and
FDM are explained in more details later. Let us illustrate some of them in
the following simple numerical example. The calculations are performed in
a 2D salt-dome structure and simulate a seismic exploration experiment for
one selected shot-point. The model, called PICROCOL (see Brokešová et
al., 1994), has been designed at the Institute Francais du Petrole (IFP) for
testing and comparison of various imaging techniques as well as for theo-
retical studies of seismic wave propagation. The model, shown in Fig. 1,
contains some geologically complex areas and it has been used to test the
applicability of the RM and other ray-based methods on a prestack seismic
data in a structure typical in seismic prospection. Velocities and densities
are not provided here, since these quantities are not relevant for this illustra-
tive example. Although rays have not been defined yet (being introduced
in Sec. 3.2), the reader certainly has an intuitive notion of rays, based,
e.g., on analogy with geometrical optics, which is sufficient to apprehend
the example. Fig. 1 shows rays reflected from two selected interfaces (all
the primarily reflected P -waves have been calculated, but only rays of two
selected elementary waves are shown in this figure), captured at receivers
spread evenly along a line profile.

When looking at these ray diagrams we see what part of the medium
is ‘illuminated’ by the two selected waves. Nevertheless, we can already
anticipate some problems concerning the ray solution – we see, for example,
a relatively complex ray behavior due to the complex shape of the reflecting
interface in the case of red rays (the rays even form some caustics there) and
we also see some shadow zones with no rays, so no ray synthetic seismograms
can be obtained there. Let us note that these shadows are either due to an
unconformity (for red rays) or due to the step discontinuity of the reflector
(in the case of blue rays) of which both are features violating the requirement

4
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of the smoothness of the model.
Figure 2 shows an example of the FDM synthetic wavefield (pressure)

corresponding to the selected shot-point. The FDM wavefield is used as
a reference in this example. In the figure, the FDM wavefield is plotted
together with ray arrival times of individual primarily reflected waves dis-
tinguished by colors (the red and light-blue points correspond to the red and
light-blue rays in Fig. 1). Some drawbacks of RM are seen already in this
figure (before comparing the corresponding synthetic seismograms). They
are namely:

• shadow zones – we see that the FDM wavefield penetrates smoothly
into the shadows, where there are no rays, and so the standard RM
will result in zero seismograms

• missing waves in the ray calculation – although being created by some
multiple reflections (all the primary reflections have been included in
the ray calculation), they are important in the FDM wavefield

• in contrast to the preceding item, some ray travel times of primary
reflections are calculated, but practically no corresponding arrivals are
seen in the FDM wavefield because the corresponding waves are very
weak in amplitude

The last two problems are basically due to the fact that we may not be able
to estimate in advance, when selecting elementary waves included in the RM
calculations, which waves will be strong in amplitude and which could be
omitted.

The last figure concerning this numerical example, Fig. 3, compares ray
(in red) and finite-difference (black) synthetic seismograms for the given
shot-point. Here we see that in some regions the fit is very good, almost
perfect (see, e.g., the right bottom detail figure), but there are also regions
where there may be considerable differences in amplitudes and waveforms
(e.g., in the vicinity of critical distance, the detail at the upper right; this
phenomenon is explained later).

The RM can be computationally very efficient compared to full-wavefield
methods. For example, in this particular model, to generate one RM shot
gather took less than 5 % of the computer time required to obtain the FDM
gather.

In this example we have seen that RM may be very useful when we want
to identify individual waves in the wavefield and it gives the approximation
of the seismograms which may be very good in some cases, or only rough in
certain regions, or much distorted in others. Thus, we have to be careful in
choosing the model suitable for the RM.

8



Introduction

The limits of applicability of the RM are discussed briefly later. They
concern the variations of the model parameters with respect to wavelength.
Through this there are, in principle, some restrictions for minimum frequency
in a given structure model. Moreover, the propagation distances and/or time
window of interest also play an important role in evaluating the applicability
of the RM. For example, from what has been said so far it is clear that the
standard ray solution would fail at distances or times where surface waves
play an important role in the wavefield, etc. In models in which only a
part of the structure is not suitable for the RM there is a possibility to
apply the RM (with an advantage) in a hybrid combination with some other
suitable technique, e.g. FDM (Opršal et al., 2002). Such an approach finds
applications for models containing a complex local structure embedded in a
large, but considerably simpler, regional structure.

Finally let us note that the approximative character of the ray wavefield is
not only a disadvantage, but sometimes it may be seen also as an advantage
– it allows us to separate individual phases and to follow the energy flux
trajectories of these waves. Thus, within the limits of its applicability, RM
may provide a better insight into the wavefield.

9



2 Equation of motion and its ray solution

Traditionally, the ray method has been used in seismology in analogy to op-
tics. The basic concept of rays as certain geometric trajectories, along which
high-frequency seismic waves propagate, has been adopted in a more or less
intuitive way. When dealing with more complex structures, it is sometimes
not clear how to generalize the method. Another possibility is to derive rays
from certain variational principles (e.g., the Fermat’s principle) or some basic
energy concepts. Nevertheless, in these approaches some assumptions have
to be accepted ‘ad hoc’ and they are not clearly justified (e.g., separation of
the wavefield to P - and S-waves in inhomogeneous isotropic media).

Seismic wave propagation through a structural model is described by
equation of motion. In seismology the medium is considered as an elastic
continuum and the corresponding equation of motion is known as the elas-
todynamic equation (EDE). In these course notes we present the so-called
asymptotic ray theory (ART). In elastodynamics the ART has been intro-
duced by Babich (1956) and Karal and Keller (1959) and it represents the
most solid base for the RM.

In the ART all the equations are strictly derived from the equation of
motion. There are no ‘mysterious’ approximations nor ‘ad hoc’ assumptions
except one, which is in the very basis of the theory: it is the form of the
solution itself. We have to adopt the ansatz solution, the form of which is
discussed in this chapter. Once we accept this solution, all the succeeding
formulas leading step by step to the final expressions for ground motions are
derived in a very clear, straightforward and mathematically strict way.

2.1 Elastodynamic equations

In this chapter we explain in brief the basis of the asymptotic theory under-
lying the ray method. Most of the theory (and formulas) is exactly the same
for both anisotropic and isotropic media. However, some of the equations
are different. When necessary, we graphically distinguish the equations cor-
responding to the isotropic and anisotropic cases by framing them with an
empty frame and a gray-filled frame , respectively. Note that the
case of an acoustic medium, important in many applications used in seismic
prospection, is not explicitly treated throughout these course notes. Never-
theless, in many respects it can be regarded as a special case of an isotropic
medium in which only P -waves can propagate.

Equation (2.1) represents the time domain EDE valid for general aniso-
tropic media (see Aki and Richards, 1980):

10



Equation of motion and its ray solution

[cijkl(x)uk,l(x, t)],j − ρ(x)üi(x, t) = −fi(x, t) . (2.1)

Equation (2.2) is EDE in an isotropic medium:

[λ(x)uj,j(x, t)],i + {µ(x)[(ui,j(x, t) + uj,i(x, t)]},j − ρ(x)üi(x, t)

= −fi(x, t) . (2.2)

In the equations, ρ means the mass density, cijkl are general elastic stiffnesses
(elements of the 4th-rank elastic tensor), λ and µ are the Lame’s elastic
parameters used to describe an isotropic medium, cijkl = λδijδkl +µ(δikδjl +
δilδjk) (µ has the meaning of rigidity or shear modulus), δij is the Kronecker’s
symbol, u denotes particle displacement and f is a body force per unit
volume. Derivatives over time and space coordinates are denoted using dots

above the letter (e.g.,üi =
∂u2

i

∂t2
) and comma in lower index (e.g., ui,j =

∂ui

∂xj
), respectively. Einstein’s summation convention is adopted for repeated

indices. The reader is expected to be familiar with these equations as well
as the basics of the continuum mechanics so it is not necessary to discuss
these equations in detail.

In the frequency domain, the above EDE’s (2.1) and (2.2) attain the form

[cijkl(x)uk,l(x, ω)],j + ρ(x)ω2ui(x, ω) = −fi(x, ω) , (2.3)

and

[λ(x)uj,j(x, ω)],i + {µ(x)[(ui,j(x, ω) + uj,i(x, ω)]},j + ρ(x)ω2ui(x, ω)

= −fi(x, ω) , (2.4)

respectively, with ω being angular frequency. In these equations, ω in the
argument of a quantity indicates that the quantity is represented by its
Fourier spectrum, e.g. u(x, ω) = F [u(x, t)], where the symbol F means the
temporal Fourier transform.

In earthquake ground motion modeling, the displacement in the above
equations means incremental quantity due to seismic motions, connected
with an incremental (presumably small) deformation of seismic origin. The

11
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body force is just due to a seismic source (not including, e.g., gravitation,
etc.). In the RM it is common to consider the above equations of motion as
homogeneous equations, i.e. without the body forces. Seismic source
is introduced in an alternative way, via additional boundary conditions along
a boundary surrounding the source. This corresponds to the concept of
radiation pattern (Aki and Richards, 1980) as explained in Sec. 5.8.

2.2 Ray series solution

Now we come to the most important and crucial point of the whole theory:
the assumed form of the solution of equations (2.1) – (2.4). It is well known
that in homogeneous media, a monochromatic plane wave represents the
simplest solution of the equation of motion. In an inhomogeneous medium,
provided it is smooth, changing only insignificantly over the wavelength of
the propagating wave, it seems to be reasonable to assume the wavefield to
be in some sense locally similar to a plane wave. Let us clarify in what sense
the solution we seek is assumed as a generalization of the monochromatic
plane wave solution:

1. The amplitude U of the solution is no more constant, but it is allowed
to vary slowly (with respect to the wavelength) with position.

2. The phase of the solution is no longer a linear function of position.
However, the phase gradient (normal to the wavefront) is assumed to
change only slowly in space.

3. In general, the solution is assumed in the form of an asymptotic series
expansion. In the zero-order ray method, we consider only one (the
zero-order) term of the expansion. Nevertheless to elucidate why to
restrict to the zero-order term and what conditions should be satisfied
to make this possible we need to start the explanation from the series
expansion and evoke basic properties of asymptotic expansions, see
Sec. 2.3.

4. We do not consider just monochromatic (time-harmonic) waves. In-
stead of an exponential function we use the analytic signals F (t) to
define the time behavior of the solution. The analytic signal is any
complex-valued function whose real and imaginary parts form a Hilbert
pair (the imaginary part is a Hilbert’s transform H of the real one),
i.e.,

F (t) = f(t) + iH[f(t)] = f(t) + i
1

π
P.V.

∞∫
−∞

f(ξ)

t− ξ
dξ , (2.5)

12



Equation of motion and its ray solution

where f(t) is a real-valued function and P.V. means that the integral
is taken in the sense of the Cauchy principal value. Note that the
exponential function exp(it) = cos(t) + i sin(t) is the special case of
the analytic signal. The advantage of the analytic signal is that it has
a one-sided spectrum, i.e., its Fourier transform vanishes for negative
frequencies. By a high-frequency signal we understand a signal with
|F (ω)| = |F [F (t)]| = 0 for 0 ≤ ω ≤ ω0, where ω0 is high. Note that the
sign of the imaginary part in the definition of analytic signal is closely
related to the sign convention used for Fourier transform: + sign would
correspond to the + sign of the exponent in Fourier transform.

The analytic signals in wave propagation problems are just the way to
allow for a suitable compact notation and to make the mathematics
simpler. However, at the end of an analytic-signal computation one
must take only the real-part of it to obtain the physically meaningful
quantity for which the problem is solved (e.g., displacement).

The displacement we seek is assumed in the form of the so-called ray
series (see, e.g., Červený, 2001, Chapman, 2004, etc.).

In the time domain, the solution of (2.1) or (2.2) at a point x and time
t is usually written in the form of the time series

u(x, t) =
∞∑

k=0

Uk(x)Fk(t− τ(x)) , (2.6)

where Uk (vectorial amplitude coefficients, complex-valued functions) and
τ (the so-called eikonal, a real-valued function) are functions to be deter-
mined under the condition (2.1) (or (2.2)) in anisotropic (or isotropic) media.
These quantities are assumed to change only slowly in space. We discuss
these quantities later. Now, let us only mention that the eikonal, which can
be interpreted as travel time, is independent of frequency so that the solu-
tion (2.6) is, in principle, non-dispersive. In (2.6), Fk’s are high-frequency
analytic signals (depending on the source) satisfying

d

dt
Fk(t) = Ḟk(t) = Fk−1(t) , (2.7)

which can be, alternatively, written as

Fk(t) =

∫ t

−∞
Fk−1(t

′)dt′ . (2.8)

These relations can be used to compute recursively Fk’s if one of them, e.g.,
F0, is known.

13
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For ω0 nominally high (ω0 � 1) it follows from (2.8) that

|Fk−1(0)| � |Fk(0)| . (2.9)

However, this does not yet imply convergence of (2.6) in the vicinity of
wavefront. Moreover, a high frequency ω0 may not mean that it is high
nominally. By a high frequency we mean the frequency for which wavelength
is small with respect to characteristic dimensions of the model (scale lengths
of inhomogeneities, propagation distances, etc.). Depending on the model,
such a ‘high’ frequency may be even less than unity so that (2.9) does not
hold and the higher-order terms in the ray series cannot be neglected with
respect to the lower-order ones.

The ray series (2.6) can be generalized in terms of distributions. Since
F0(t) = F0(t) ∗ δ(t) (with ∗ symbol used for convolution), any Fk(t) in
the series can be written as Fk(t) = F0(t) ∗ δk(t), where δk(t) is the k-th
integral of the Dirac delta function, i.e. δ0(t) = δ(t), δ1(t) = h(t), ..., δk(t) =
tk−1h(t)/(k− 1)! for k > 1, where h is the Heaviside step function (h(t) = 0
or 1 for negative or positive t, respectively). Four lowest-order δk’s are shown
in Figure 4.

Figure 4: First four integrals of the Dirac delta function (after Červený,
2001).

By the use of distributions, the series (2.6) can be rewritten into the form

u(x, t) = Fk(t) ∗
∞∑

k=0

Uk(x)δk(t− τ(x)) . (2.10)

In this way the solution can be interpreted in terms of propagating dis-
continuities. One speaks of a j-th order discontinuity of a function at a
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point if its (j−1)-th derivative is discontinuous while all lower-order deriva-
tives are continuous there. From this point of view, the solution in (2.10)
is represented in terms of discontinuities propagating with the wavefront
(t = τ). The most distinct discontinuity is carried by the zero-order term.
Higher-order terms are smoother and smoother because of the k-th order
integration of the Dirac function. In the vicinity of wavefront (i.e., for times
close to τ), the series (2.10) may be convergent and it is sometimes called
the near-wavefront expansion. However, for large (t − τ(x)) it is generally
divergent.

The intent of the equations (2.10) or (2.6) is not in summing the series
up to a large number of terms but rather in taking into account only the
first few of them while neglecting the remaining ones. This can be better
understood when transforming the equations into the frequency domain and
evoking the concept of asymptotic series (see Sec. 2.3).

In the frequency domain, the ray series corresponding to (2.6) or (2.10)
has the form

u(x, ω) = 2h(ω)f(ω) exp[−iω(τ(x))]
∞∑

k=0

Uk(x)(−iω)−k , (2.11)

where f(ω) = F [f(t)], but h(ω) here means the Heaviside function of the
variable ω. Note that 2h(ω)f(ω) is the spectrum of the analytic signal
corresponding to the function f(t).

The frequency-domain ray series are assumed to be an asymptotic
power series for high ω. Thus we are concerned with what happens as
ω tends to ∞ rather than what happens as the number of terms grows. The
asymptoticity allows us to approximate the solution retaining only a few
lowest-order terms and mostly even the zero-order one, as it is explained in
the next section. The question whether (2.11) is really an asymptotic series
in general structures is very difficult and it is beyond scope of this book. The
asymptotic character of the series has been proved in many special cases.

2.3 Asymptotic power series and their basic property

Let us assume a sequence of inverse integer powers of ω, ω−k, constituting
a series with ω-independent coefficients ak

∞∑
k=0

akω
−k . (2.12)

For k > 0, the inverse powers ω−k decay with ω →∞. Moreover, the higher
is the power, the faster its reciprocal decays with ω increasing. It holds

lim
|ω|→∞

ω−(n+k)

ω−n
= 0 , (2.13)

15



Asymptotic ray method in seismology: A tutorial

for any k > 0 and any n. Utilizing the well known concept of “small-o
estimate”, the equation (2.13) can be written as

ω−(n+k) = o(ω−n) . (2.14)

Any sequence {ζn} satisfying the condition ζn+1 = o(ζn) is called the asymp-
totic sequence, i.e. the inverse powers of ω form an asymptotic sequence.

The asymptoticity of the sequence, however, is not sufficient for the se-
ries (2.12) to represent the asymptotic expansion of a function x, x(ω) ≈
N∑

k=0

akω
−k. For this the series must satisfy the condition given, e.g., by the

Poincare’s definition of asymptotic series. According to this definition, for
all N the series must satisfy

|ωN [x(ω)−
N∑

k=0

akω
−k]| < ε , (2.15)

for arbitrarily small ε. This condition is equivalent to

|x(ω)−
N∑

k=0

akω
−k| = o(ω−N) , (2.16)

or, alternatively, due to (2.14)

|x(ω)−
N∑

k=0

akω
−k| ≤ Kω−(N+1) , (2.17)

for some positive constant K which may depend on N (but not on ω). For
those familiar with the Landau’s order estimates, the last equation can be
rewritten by the use of the “large-O symbol”

|x(ω)−
N∑

k=0

akω
−k| = O(ω−(N+1)) . (2.18)

The conditions (2.15) or (2.16) mean that the error of the expansion
up to N is less in order then ω−N . Due to (2.17) – (2.18) we can further
state that the error is of the exactly same order as ω−(N+1), the first term
of the sequence {ζn = ω−n} not included in the expansion. Moreover, since
ω−(N+1) decays to zero as ω approaches infinity, the condition (2.17) means
that the error estimate of the expansion up to N can be made arbitrarily
small, provided ω is sufficiently high. This is true for all N , including N = 0,
in which case we keep only one term in (2.12), the one with a0. This term
is called the leading term of the expansion.
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Figure 5: Typical behavior of individual terms in an asymptotic power series
(left) and of the error of the expansion up to N (right).

The conditions (2.15) to (2.17) hold for all N . Thus we can even replace
the upper limit of the sums by ∞ and write formally

x(ω) ≈
∞∑

k=0

akω
−k . (2.19)

However, this does not imply convergence of the series (2.12)! Indeed,
asymptotic series are often divergent. It definitely makes no sense to sum
them up to some high N ’s, we usually take into account just the first few
terms or even the leading term only. In the concept of asymptotic series the
question of convergence is irrelevant as their major importance consists in
the conditions (2.15) to (2.17), valid for any (even small) integer N.

Fig. 5 illustrates qualitatively how the individual terms of the series and
the error of the expansion may behave with increasing ω and N. Typically,
the error decreases with growing ω for any fixed number of terms in the
series (even for the leading term itself). On the other hand, when ω is fixed,
the error may grow with N for N greater than a certain value. It is therefore
useless to add more terms into the expansion, when the error has passed its
minimum.

As it has already been said, the series in (2.11) is assumed to be asymp-
totic. Since we deal with analytic signals in our solution, we can consider
only non-negative frequencies in the expansion. The coefficients in the ex-
pansion have to be evaluated, for a given model setting, to make (2.11) be
the solution of the equation of motion. In practice it is common to consider
only the leading term in the series. From (2.12) we see that this term is just
a constant a0. It means that in (2.11) we retain only one term, the one with
frequency-independent amplitude.

17



Asymptotic ray method in seismology: A tutorial

2.4 Zero-order ray solution

Let us start with several notes on the accuracy of the expansion (2.19). The
parameter ω signifies angular frequency. It has been said that the error of the
asymptotic expansion in inverse integer powers of ω can be made arbitrarily
small, provided ω is sufficiently high. In physical reality, however, there
are some natural limits for ω so that it cannot be higher than a certain
maximum value and thus the estimate of the error of the expansion may not
be, in general, small enough.

We speak here about the error estimate, not about the error itself. The
error estimate is rather a general bound of the error; it does not mean that
the error cannot be, in some specific case, smaller. There are known even
certain canonical situations when the ray series is finite (i.e. it terminates at
n = Nmax, Uk(x) = 0 for k > Nmax) and exact (the error for any k > Nmax

is zero). For example, it has been shown by Vavryčuk and Yomogida (1995)
that if the series (2.14) is written for the Green’s function in a homogeneous
isotropic medium it has only three non-zero terms for P - and three for S-
waves. Altogether these six terms constitute the solution equivalent to the
well known Stoke’s solution for the Green’s function (Aki and Richards,
1980), including the near-field term.

In the modeling of seismic wavefields in inhomogeneous media, the higher-
order terms of the ray series have been considered rather exceptionally. In
most of the practical seismic applications, only the zero-order ray approxi-
mation (taking into account the leading term only) is traditionally used.

In the following text we restrict ourselves only to the zero-order ray
solution. In the time domain, omitting the index “0” in F0 and U0, we write
the trial solution as

u(x, t) = U(x)F (t− τ(x)) . (2.20)

This expression is very general, useful also for transient signals. Specifying
F (t) = exp(−iωt), for some fixed frequency, we obtain the so-called time-
harmonic solution

u(x, t, ω) = U(x) exp[−iω(t− τ(x))] . (2.21)

In its form this solution reminds the zero-order ray solution in the frequency
domain (if we would fix t and allow ω to vary)

u(x, ω) = U(x) exp[iωτ(x)]2h(ω)f(ω) , (2.22)

obtained from (2.11) retaining the leading term. Indeed, considering ω
as a variable and t as a parameter, (2.21) represents a special case of
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(2.22). Sometimes, if we are not interested much in the source spectrum,
the frequency-domain zero-order ray ansatz is written as

u(x, ω) = U(x) exp[iωτ(x)] . (2.23)

Typically ω is large enough that the leading term of the ray series suffi-
ciently approximates the solution of (2.1) – (2.4). According to (2.17), the
error estimate satisfies

|u(x, ω)−U(x) exp[iωτ(x)]| ≤ Kω−1 . (2.24)

However, this condition cannot be used to study the accuracy of the solution
and the applicability of RM in a quantitative way because it is difficult to
find an analytic expression for the constant K. The validity conditions of
the RM are mentioned in Chapter 7.

Let us discuss the zero-order ray solution and introduce related termi-
nology. We call the function U the ray amplitude. It does not depend on
frequency. It may be, in general, a complex-valued function of position x.

The function τ is the so-called eikonal. In the standard RM it is assumed
to be real-valued and it is independent of frequency. It is interpreted as
travel-time of the elementary wave for which the solution is constructed.
Surfaces τ(x) = const represent wavefronts.

A very important quantity is the gradient of τ . It is a vector perpen-
dicular to the wavefront. This vector, called the slowness vector, is given
as

pi(x) = τ,i(x) =
∂τ(x)

∂xi

=
nτ

i (x)

c(x)
, (2.25)

where nτ is the unit vector perpendicular to the wavefront and c is the phase
velocity. From (2.25) we see that the magnitude of p is inversely proportional
to the phase velocity — that is why p is called the slowness vector.

Note that (2.20), (2.21), (2.22) and (2.23) describe a non-dispersive wave-
field, progressing with a position-dependent phase speed c(x), with wave-
fronts of general shape at surfaces of equal τ(x) and with position-dependent
amplitude. In certain features such a solution represents a generalization of
plane waves, the well known exact solution in homogeneous media. The
quantities U and p are assumed to be slowly varying functions of posi-
tion x over the wavelength under consideration (this requirement can also
be used, among others, as a criterion of applicability of the RM in the
given structure, see Sec. 7). This assumption makes good sense because we
are dealing with a high-frequency asymptotic approximation of the wave-
field. The higher the frequency is the less the medium is locally (within
a wavelength) inhomogeneous and the wavefield propagation should locally
resemble the propagation in a homogeneous medium. In other words, when
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the wavelength is short compared with the scale of medium heterogeneities
as well as the propagation distances, the solution can be expected to behave
locally as plane waves.

2.5 Basic asymptotic ray theory equations for the zero-order so-
lution

In order to determine the functions U(x) and τ(x), the parameters of our
trial solution, we require the solution to fit asymptotically the corresponding
equation of motion. Substituting the zero-order ray ansatz (2.20) in the
equation (2.1) or (2.2) (without the body forces) and recombining the terms
in the equation to gather those with the same time derivative of F yields

F̈Ni(U,∇τ)− ḞMi(U,∇τ) + FLi(U) = 0 , (2.26)

where the vectorial coefficients N, M and L differ for anisotropic and isotropic
cases. More specifically, for anisotropic media we get from (2.1)

Ni(U,∇τ) = cijklτ,lτ,jUk − ρUi (2.27)

Mi(U,∇τ) = cijklτ,jUk,l + (cijklτ,lUk),j (2.28)

Li(U) = (cijklUk,l),j , (2.29)

while, in isotropic structures, (2.2) yields

Ni(U,∇τ) = (λ+ µ)Ujτ,iτ,j + µUiτ,jτ,j − ρUi (2.30)

Mi(U,∇τ) = (λ+ µ)[Uj,iτ,j + Uj,jτ,i + Ujτ,ij] + µ[2Ui,jτ,j + Uiτ,jj]

+λ,iUjτ,j + µ,j(Uiτ,j + Ujτ,i) (2.31)

Li(U) = (λ+ µ)Uj,ij + µUi,jj + λ,iUj,j + µ,j(Ui,j + Uj,i) , (2.32)

In both cases, N, M and L are vectorial functions of U, and N and M
depend also on the gradient of τ (slowness).

In the frequency domain, by inserting (2.23) (or (2.22)) into (2.3), away
from body forces, and gathering the terms with the same power of ω we
obtain

(iω)2Ni(U,∇τ)− (iω)1Mi(U,∇τ) + (iω)0Li(U,∇τ) = 0 , (2.33)
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where the components of N, M and L are again given by equations (2.27) to
(2.29). The same equation (2.33) would result when inserting our frequency
domain zero-order trial solution into the homogeneous equation (2.4) for
isotropic media, with the exception that in isotropic media the coefficients
would be given by (2.30) to (2.32) instead of (2.27) to (2.29). Note that we
would obtain exactly the same when inserting the time-domain harmonic
solution (2.21) into the corresponding time-domain equations of motion.

Note also that the equation (2.26) represents the equation of motion
under the assumption of our trial solution. Thus it must be satisfied at any
time and any point. Because of different orders of derivatives of F , this
cannot be accomplished without setting all the coefficients N, M and L to
zero. Similarly, (2.33) could not be fulfilled for arbitrary frequency without
setting the coefficients to zero. Thus, the equation of motion yields three
conditions, N = 0, M = 0 and L = 0, to be satisfied by the solution.
Note that the conditions are exactly the same both in the frequency and
the time domains and they remain unchanged also when dealing with the
time-harmonic solution. Henceforth we need not distinguish these cases.

Clearly, under general circumstances, all of the conditions cannot be
satisfied exactly (neither in anisotropic, nor in isotropic media) since they
represent nine equations while there are only four parameters (three compo-
nents of U and τ) in our ansatz. However, in high-frequency approximation,
the conditions are of different importance.

Only the first two conditions are used to determine the eikonal and the
ray amplitude. Note that if frequency is high, the first two terms in (2.33),
having the multipliers ω2 and ω, dominate over the third one. Thus, the
conditions for N and M are more important to be satisfied. The same
holds in the time domain, since due to the high-frequency character of F
the terms with higher-order derivatives of F prevail, see (2.9). In general,
the second and third terms in (2.26) and (2.33) do not vanish. Thus, our
zero-order solution may not satisfy the equation of motion completely. In
high-frequency approximation the error is presumably small.

The first condition, N = 0, results in the so-called eikonal equation,
nonlinear partial differential equation for τ(x). As it is explained in Sec. 3.1,
besides τ it constrains also the direction (polarization) of U. The magnitude
of U (one scalar quantity) can be determined from the so-called transport
equation. This equation is derived by projecting the vector M into the
direction of the amplitude U (for details see Sec. 5.5).

After solving the eikonal and transport equations for τ and U we obtain
a zero-order ray solution for one elementary wave. This is to be superposed
with solutions for all the elementary waves under study. As explained above,
the wavefield obtained in this way is not exact (except for a few canonical
examples) but it provides a useful and widely applicable approximation.
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In this chapter, we derive the eikonal equation, both for isotropic as well as
anisotropic media. We show that in isotropic structures, the high-frequency
wavefield separates into two independent waves, P and S, propagating at
different speeds and differently polarized. In anisotropic media, the eikonal
equation yields that, in any direction, three independent linearly polarized
waves can propagate.

The eikonal equation is solved by the use of characteristic curves of the
equation, that we call rays. We derive the so-called ray tracing system: dif-
ferential equations allowing to calculate rays (and travel times along rays) in
smooth media from known initial conditions. It has been already mentioned
that there are some alternative possibilities to define rays. We show that
rays introduced in this chapter as a tool for solving the eikonal equation are
exactly the same curves as those satisfying Fermat’s principle and those ob-
tained from energy considerations as energy flux trajectories. Note that the
approach presented here, i.e., defining rays as characteristics of the eikonal
equation, is the most general among the mentioned alternatives.

At the end of this chapter we explain how to calculate rays across struc-
tural interfaces, specifically how to calculate slowness vectors of reflected
and transmitted rays from the one of the incident ray. The slowness vectors
of the waves generated at the interface represent the new initial conditions
for the ray tracing system and allow us to continue with the ray calculation
after interaction with the interface. In this way, rays and travel times along
rays can be evaluated in a layered/blocky medium.

3.1 Eikonal equation

The eikonal equation comes from setting the first term, Ni for i = 1, 2, 3, in
(2.26) or (2.33) to zero. In anisotropic media this condition reads

Ni(U,∇τ) = cijklτ,lτ,jUk − ρUi = 0 , (3.1)

while for isotropic structures we have

Ni(U,∇τ) = (λ+ µ)Ujτ,iτ,j + µUiτ,jτ,j − ρUi = 0 . (3.2)

By introducing the so-called Christoffel matrix with elements Γik as fol-
lows
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Γik =
cijkl

ρ
τ,jτ,l =

cijkl

ρ
pjpl , (3.3)

or

Γik =
λ+ µ

ρ
τ,iτ,k +

µ

ρ
δikτ,lτ,l =

λ+ µ

ρ
pipk +

µ

ρ
δikplpl , (3.4)

we can rewrite (3.2) and (3.1) into the simple and compact form

(Γij − δij)Uj = 0 , (3.5)

the same both for the isotropic and anisotropic media.
We have introduced here the Christoffel matrix Γ just as an useful nota-

tion to simplify the equations (3.1) and (3.2). The matrix, however, plays
an important role in wave propagation problems and it has many interesting
properties (see Červený, 2001). For what follows let us only mention that
it is obviously symmetric, Γij = Γji, because of the well known symmetry
of the elements of the elastic tensor cijkl. From the definition of the matrix
it is clear that its elements are homogeneous functions of the second order
in pi = τ,i. This means that Γik(apj) = a2Γik(pj), for any non vanishing a.
Furthermore, the matrix is positively definite. Its eigenvalues are real and
positive. Thanks to the symmetry of the Christoffel matrix, the eigenvectors
corresponding to the different eigenvalues are orthogonal (independent from
each other).

Representing the ray amplitude U by the use of a scalar amplitude factor
A and the corresponding unit polarization vector g, Ui = Agi, |g| = 1 the
equation (3.5) yields

(Γij − δij)gj = 0 . (3.6)

This equation can be viewed as an eigenvalue problem of the matrix Γ.
Indeed, the standard equation,

(Γij −Gδij)gj = 0 , (3.7)

with G being a general eigenvalue, is equivalent to (3.6), under the condition

G = 1 . (3.8)

As G is the eigenvalue of the Christoffel matrix, (3.8) constraints gradient
of τ . Thus, by determining the eigenvalues of the matrix Γ and equating
them to unity we obtain the eikonal equation (partial differential equation
of the second order for τ) we look for.
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The eigenvalues are determined standardly from the condition

det(Γjk −Gδjk) = 0 . (3.9)

This leads to the cubic equation for G’s

G3 − PG2 +QG−R = 0 , (3.10)

where the coefficients are given as follows: P is the trace of the Christoffel
matrix Γ

P = Γii , (3.11)

R is the determinant of Γ
R = det Γij , (3.12)

and Q is composed from 2× 2 subdeterminants of Γ as

Q = det

 Γ11 Γ12

Γ12 Γ22

 + det

 Γ22 Γ23

Γ23 Γ33

 + det

 Γ11 Γ13

Γ13 Γ33

 . (3.13)

Due to the symmetry and positive definiteness of the Christoffel matrix, the
eigenvalues (roots of (3.10)) are real-valued and positive.

In anisotropic media, (3.10) yields, in general, three different eigen-
values

G1 6= G2 6= G3 . (3.14)

As soon as the eigenvalues are evaluated, we can easily find the corre-
sponding eigenvectors from (3.7). These are three unit mutually perpendic-
ular vectors. They represent polarization vectors of three independent lin-
early polarized waves, which can propagate in the given anisotropic model
specified by cijkl. Their amplitudes are given as

U(m)(x) = A(m)(x)g(m)(x) , (3.15)

and their travel times τ (m) must satisfy the eikonal equation

Gm(τ
(m)
,1 , τ

(m)
,2 , τ

(m)
,3 , x1, x2, x3) = Gm(p

(m)
1 , p

(m)
2 , p

(m)
3 , x1, x2, x3) = 1 ,

(3.16)
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where m = 1, or 2 or 3, according to the type of the wave under considera-
tion. In general anisotropy, there are no analytical expressions; everything
has to be solved numerically.

To summarize, in a given anisotropic structure, only those waves of which
the slowness vectors satisfy (3.16) may fulfill the equation of motion and thus
represent the solution we seek. More specifically, only those waves make the
first term in (2.26) and (2.33) zero (i.e., satisfy (3.1)). For a fixed x and
a fixed nτ (the unit vector orthogonal to wavefront), the equation (3.16)
poses a constraint on the phase velocity (see (2.25)). Thus, in a given point
and a given direction, there are three possible waves propagating with three
different phase speeds. They are polarized linearly along the three mutually
perpendicular vectors g representing the eigenvectors of the Christoffel ma-
trix. Their polarization vectors are not, in general, related to the wavefront
(none of these is perpendicular or tangent to the wavefront, etc.). We usually
call these waves as ‘quasi-P ’(qP ) and ‘quasi-S’ (qS1 and qS2) waves. Note
that for quasi-S waves it often occurs that their phase velocities are close
in their magnitudes so that the waves are coupled, traveling with nearly
the same phase speeds. In such a case, the zero-order ray solution as such
breaks down as it is designed to describe separately propagating waves and
not interference or coupled waves.

In isotropic media we solve the same equation (3.9), but here, when
substituting (3.4) it can be shown (after simple algebra) that (3.10) factorizes
into

(
µ

ρ
pipi −G)2(

λ+ 2µ

ρ
pipi −G) = 0 . (3.17)

This means that two of the eigenvalues (let us say G1 and G2) coincide
and only the third one (G3) differs from them. Using the notation

α =

√
λ+ 2µ

ρ
, (3.18)

and

β =

√
µ

ρ
, (3.19)

this equation becomes

(β2pipi −G)2(α2pipi −G) = 0 . (3.20)

This holds if either

25



Asymptotic ray method in seismology: A tutorial

G = β2pipi , (3.21)

which, together with the condition G = 1, yields the following analytical
expressions for the square of the slowness vector magnitude

pipi =
1

β2
, (3.22)

or if

G = α2pipi , (3.23)

yielding

pipi =
1

α2
. (3.24)

Both (3.22) and (3.24) represent the eikonal equations in isotropic media.
The equations constraint gradient of τ of the two waves, satisfying (3.2),
which can propagate in a given isotropic model. We call these waves P and
S, respectively. From (3.22) and (3.24) we also see that the magnitudes of
their slowness vectors are α−1 and β−1, respectively. The quantities α and
β thus represent phase velocities of the two waves (compare (2.25)).

In isotropic media, only one of the eigenvectors of the Christoffel matrix
can be determined uniquely (from (3.7)) — the one corresponding to the
P -wave. As regards the remaining two, corresponding to the coinciding
eigenvalues, we only know that they must be mutually perpendicular and
orthogonal to the P -wave polarization vector. From this point of view, an
isotropic medium is sometimes regarded as a degenerate case with respect
to general anisotropic media.

Let us determine the eigenvector corresponding to the P -wave (i.e., to
the eigenvalue G3), g(3). By multiplying the equation (3.7), for G3 and g(3),

by g
(3)
i , substituting (3.4) for the elements of the matrix Γ and taking into

account that pi = nτ
i /α and G3 = 1 we obtain[

λ+ µ

ρ

nτ
i n

τ
k

α2
+
µ

ρ
δik
nτ

l n
τ
l

α2
− δik

]
g

(3)
k g

(3)
i = 0 . (3.25)
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From this it follows that (nτ
i g

(3)
i )2 = 1 which yields g(3) = ±nτ . We conclude,

that the P -wave, with the amplitude

U(P )(x) = A(x)g(3)(x) , (3.26)

is linearly polarized perpendicularly to its wavefronts. The P -wave is also
called the compressional or the longitudinal wave.

The eigenvectors g(1) and g(2) cannot be determined uniquely from (3.7),
as the corresponding eigenvalues G1 and G2 coincide. We only know that
they complement g(3) into an orthonormal set. Thus, the S-wave is polarized
in the plane tangent to the wavefronts. It is also called the shear wave. Its
polarization is, in general, elliptical. For its amplitude we have the expression

U(S)(x) = B(x)g(1)(x) + C(x)g(2)(x) . (3.27)

Let us note that, in our high-frequency approximation, we have obtained
separation of the wavefield into P - and S- waves in inhomogeneous isotropic
media. This is a very important finding. The P - and S-wavefields are fully
separated in homogeneous structures, but generally not in inhomogeneous
structures. Only, provided that the frequency is high, they are separated ap-
proximately (we have derived the separation for our approximate solution).
Let us emphasize that in the approach we follow in this book, the separa-
tion is not assumed ‘ad hoc’, but it follows from the equation of motion as
a consequence of our trial solution.

3.2 Solution of the eikonal equation by the use of characteristics

The eikonal equation, both for isotropic as well as anisotropic models, rep-
resents a non-linear constraint for the slowness vector p. Recall in mind
that

pi(x) = τ,i(x) =
∂τ(x)

∂xi

. (3.28)

Thus, the eikonal equation is a non-linear partial differential equation of the
first order for τ (the eikonal).

To find the eikonal, we must know how to solve eikonal equations. There
are different approaches to this problem. One possibility is to evaluate the
eikonal directly by the use of certain grid-based methods, called usually as
eikonal solvers. For example, the FDM approach by Vidale (1990), or Pod-
vin and Lecomte (1991), and, on the other hand, the so-called fast marching

27



Asymptotic ray method in seismology: A tutorial

method (Sethian, 1999), fall into this category. However, stability and accu-
racy represent a serious problem of these techniques. Moreover, the eikonal
solvers do not take into account the multi-valuedness of the solution, physi-
cally corresponding to the wavefront folding and triplications of hodochrons
(relatively frequent situations in seismology). In these course notes, an alter-
native, ray-based, approach is applied. To solve the eikonal equation we use
the method of characteristic curves (e.g., Bleistein, 1984). In this method,
the multi-valued solution can be easily obtained by the so-called ray multi-
pathing. Moreover, rays (obtained as the characteristic curves, see below)
provide a good base to evaluate ray amplitudes, necessary to complement
the ray solution.

To explain the concept of characteristics it is convenient to rewrite the
eikonal equation into the form of the static Hamilton-Jacobi equation, known
from classical mechanics,

H(xi,
∂Ψ

∂xi

) = 0 , (3.29)

or

H(xi, pi) = 0 with pi =
∂Ψ

∂xi

. (3.30)

Here Ψ = Ψ(xj) is the generating function to be determined (in our case
ψ = τ), and pj are the generalized momenta. It is important to emphasize
that here we do not interpret the ‘Hamiltonian’ H as a total energy of the
system. In the following, we just use the Hamilton formalism to solve the
equation. In this formalism, pi’s an xi’s are treated as independent variables.

The equation (3.30) is usually solved by the use of characteristics which
satisfy the so-called canonical equations. What is the meaning of these
curves? These are the curves (in 6D phase space, (pi, xi)), along which the
eikonal equation is satisfied and along which τ (the generating function) can
be easily computed by simple quadrature (a curve integral). The canonical
equations for the characteristic curves read

dxi

du
=
∂H

∂pi

,
dpi

du
= −∂H

∂xi

,
dτ

du
= pi

∂H

∂pi

, i = 1, 2, 3, (3.31)

with u being a flow parameter along the curve. In this way, the eikonal
equation (nonlinear partial differential equation) is replaced by a system of
seven ordinary differential equations (3.31) which are usually much easier to
solve. They allow us to determine the characteristic curve in 6D phase space
(xi, pi), parameterized by the flow parameter u: xi = xi(u), pi = pi(u). It is
obtained from the first six coupled equations of the system. The projection
of this 6D curve into the 3D space (xi), i.e., the geometrical trajectory of
the characteristic curve, we call the seismic ray. As it results from the first
six equations of the system (3.31), the equations are called the ray tracing
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system (RTS). The ray tracing system provides, along with the geometrical
trajectories (rays), the distribution of the slowness along these trajectories,
pi = pi(u).

The seventh equation of (3.31), not coupled with the other six, allows us
to determine the eikonal τ = τ(u) by a simple quadrature along the ray. To
summarize, in this approach we are able to calculate travel times, but not
at any point in space but only at the points through which some rays pass.

3.3 Ray tracing system in isotropic media

In isotropic structures, the eikonal equation to be solved is of the form

pipi =
1

v2
, (3.32)

the same for both P - (v = α) and S- (v = β) waves.

In the Hamilton-Jacobi form, the above equation reads H(pi, xi) = 0,
where

H = (pipi − v−2) . (3.33)

We can consider, with advantage, the function H in a more general form

H(xi, pi) =
1

η
[(pipi)

η/2 − v−η] , (3.34)

which corresponds to taking the power η/2 of the equation (3.32) and mul-
tiplying it by 1/η. For η = 0 the above expression is not defined and must
be replaced by the limit for η → 0. Using the l’Hospital rule we obtain for
H in the limit

H(xi, pi) =
1

2
ln(pipi) + ln v =

1

2
ln(v2pipi) . (3.35)

If we insert (3.34) into the canonical equations (3.31), we obtain the
following general six RTS equations
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dxi

du
= v2−ηpi

dpi

du
=

1

η

∂

∂xi

(
1

vη
) , (3.36)

and for τ the equation

dτ

du
= (pkpk)

η
2 =

1

vη
, (3.37)

Note that the equations for xi’s and those for pi’s are coupled, so that
they must be solved together. Alternatively, we can write the six equations
of (3.36) in the form of the three second-order RTS equations

d

du
(vη−2 dxi

du
) =

1

η

∂

∂xi

(
1

vη
) . (3.38)

The parameter η is usually considered as an integer. It controls the phy-
sical meaning of the parameter u in the RTS equations. Let us specify the
RTS for different special choices of η, useful for seismological applications:

1. For η = 0, u equals directly the travel time τ , which follows from the
seventh equation of the system (3.31) with (3.35) inserted for H. In
this case, the equation like (3.37) for τ need not be solved — the travel
time is known at any point at which the ray is calculated. This is the
main advantage of this choice. The RTS has the form

dxi

dτ
= v2pi

dpi

dτ
= −∂ ln v

∂xi

= −1

v
v,i . (3.39)

2. For η = 1, u has the meaning of the arclength along the ray (denoted
s henceforth), see (3.37). It is easy to imagine how the rays are traced
point by point in terms of the arclength. The RTS in this case reads

dxi

ds
= vpi

dpi

ds
=

∂

∂xi

(
1

v
) = − 1

v2
v,i , (3.40)

and τ can be easily obtained from
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dτ

ds
=

1

v
. (3.41)

3. For η = 2, the simplest form of the RTS is obtained (it does not contain
v in the equations for xi’s)

dxi

dσ
= pi

dpi

dσ
=

1

2

∂

∂xi

(
1

v2
) =

1

2
(v−2),i , (3.42)

and for τ we have

dτ

dσ
=

1

v2
. (3.43)

4. Finally, for η = −1 we write the RTS

dxi

dς
= v3pi

dpi

dς
= − ∂v

∂xi

, (3.44)

and τ is given by

dτ

dς
= v . (3.45)

This form of the RTS is particularly useful for gradient media in which
v depends linearly on space coordinates.

There are possibly other choices of η in (3.34) or possibly other choices
for the Hamiltonian itself, leading to alternative forms of the RTS. These
are, however, beyond the scope of this book.

Let us note that to calculate rays and travel times along rays in an
isotropic medium, the model is fully described by distribution of velocities
v = α or v = β. None of the ray tracing equations depend on the density
of the medium. In ray kinematics, the density is not used as a medium
parameter despite the fact that it stands in the equation of motion. It is
relevant only when dealing with ray amplitudes.
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In order to calculate rays using the RTS, initial conditions for xi’s, pi’s
and τ must be specified. Thus, we have to specify the point xi0 = xi(u0)
(source) from which the rays are emitted, the initial slowness pi0 = pi(u0)
which must satisfy pi0pi0 = v−2(xi0) for the given type of wave (either P -
or S-, i.e., we take v = α or v = β in the condition as well as in the
RTS), and the initial time τ0 = τ(u0). Alternatively, instead of pi0 we
can specify only the direction of the initial slowness, since its magnitude is
constrained by the eikonal equation at xi0. One such possibility, used often in
applications, is to employ two angles, declination ψ and azimuth ϑ as follows:
p10 = v−1(xi0) sinψ(xi0) cosϑ(xi0), p20 = v−1(xi0) sinψ(xi0) sinϑ(xi0), and
p30 = v−1(xi0) cosϑ(xi0).

Note that not all of the equations in the RTS (3.36) (and the corre-
sponding equations for specific choices of the flow parameter along the ray)
are independent. Because of the eikonal equation (3.32), being satisfied (by
definition) along rays, and constraining pi’s, only two slowness components
can be calculated using the RTS. When all three slowness components are
obtained from the RTS, the constraint condition can be used to check the ac-
curacy or to correct the solution at each step ∆u in the case of the numerical
solution of the RTS equations.

The number of the RTS equations decreases further in certain simpler
situations, namely in the case of lower dimensionality of the structure model.
Let us first consider a 2D model, in which velocity does not vary along one
coordinate direction. Without loss of generality let this coordinate be x2.
We then call the plane x1-x3 the plane of the symmetry of such a model.
For general initial conditions (general initial direction of a ray, not related
in any sense to the plane of the model symmetry) we compute a 3D ray
in the 2D model. Such computations are usually called as 21

2
-dimensional.

In this case the RTS reduces to four equations for x1, x3, and p1, p3 of
exactly the same form as above ((3.36), (3.39) – (3.44)), generally requiring
a numerical solution, plus two equations for x2 and p2, for which we have a
straightforward ‘analytical’ solution. In its simplest form it can be written
for the parameter σ (for which xi’s does not depend explicitly on velocity)
as

x2 = x20 + p20(σ − σ0), p2 = p20 , (3.46)

i.e., p2 is a constant and x2 grows linearly with σ. For any other flow param-
eter we would also obtain the constant p2 (thanks to vanishing derivative of
the corresponding power of velocity in the equation for p2), but equation for
x2 would moreover contain some power of velocity in its linear term. Since
velocity varies with x1 and x3, to solve the equation for x2 would require
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to perform a simple quadrature. To summarize, in the case of 21
2
D compu-

tations of rays, we solve (usually numerically) exactly the same equations
as in the general 3D case in the plane x1-x3. These equations are supple-
mented by a very simple equation for x2. The p2 slowness component need
not be calculated as it remains constant along the whole ray. Similarly as
in a general 3D case, one of the equations for p1 and p3 can be optionally
replaced by the constraint for pi’s — the eikonal equation (3.32). The initial
slowness must also satisfy this constraint. Thus, p2

10 + p2
30 = 1/v2

0 − p2
20,

where v0 = v(x10, x30). In this way, via initial conditions, p20 influences the
solution of the equations in the x1-x3 plane. Let us add finally that, as it
can be shown easily from (3.46), the projection of a ray into the x1-x2 plane
(the map view) is not a straight line. It means that, eventhough the model
is only 2D, the ray represents a 3D curve.

For special choice of the initial slowness conditions such that p20 = 0, the
situation simplifies even further. The p2 component remains equal to zero
along the whole ray. Therefore the x2 ray coordinate remains equal to its
initial value x20, see (3.46). Thus the ray is an in-plane ray, situated in the
plane perpendicular to x2-axis, i.e., the plane x1-x3. The ray calculation is
fully two-dimensional (a 2D ray is computed in 2D medium), described com-
pletely by the four RTS equations for x1, x3, and p1, p3, with corresponding
initial conditions x10, x30, p10, p30 with p2

10 + p2
30 = 1/v2

0.

Further simplification is possible in 1D models in which velocity varies
in one direction only. Let this direction be the direction of the x3-axis
(usually vertical). Then, if we rotate the coordinate system along the x3-
axis axis to make the initial slowness vector being situated in the plane x1-
x3, the p20 component will vanish, similarly as in the previous case. Thus,
p2 = p20 = 0 along the whole ray (thanks to the velocity independence on
x2) and x2 = x20. The whole ray is situated in the plane x1-x3. However,
in contrast to the 2D model, we have moreover p1 = p10 (thanks to the
velocity independence on x1) and x1 = x10 + p10(σ − σ0). The horizontal
slowness p1, remaining constant along the whole ray, is often called the ray
parameter and denoted traditionally as p (p 6= |p|). Provided we use other
flow parameter than σ, the equation for x1 contains the corresponding power
of velocity in the linear term, but this does not complicate the situation in a
principal way; the equation can still be solved by a simple quadrature. From
the RTS, only the two equations for x3 and p3 retain their original form and
must be, in general, solved by standard numerical solvers under the initial
conditions x30, p30 = ±(1/v2

0−p2
10)

1/2. Despite the model is 1D, the problem
of the ray computation is 2D, since we need two coordinates (x1 and x3) to
describe rays, 2D in-plane curves. The problem would become fully 1D only
for p10 = 0, in which case the ray would be a vertical straight line.

In certain simple structures (simple velocity distributions) the RTS can
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be solved analytically. Let us name here only two examples: the case of a
homogeneous medium and that of a medium with velocity increasing linearly
in one direction (1D gradient model). The reader is encouraged to derive in
detail the following equations.

In homogeneous media, described by the velocity v0, the slowness pre-
serves its initial value and from the equation for dxi/du in (3.36) we have

xi = xi0 + v2−η
0 pi0(u− u0) (3.47)

which is the parametric equation of a straight line. The rays in homogeneous
isotropic media are thus straight lines starting from the source in a direction
prescribed by the initial conditions for pi. (The analogous conclusion about
rays we will be able to make even for anisotropic homogeneous media, see
Sec. 3.6.) The wavefronts are spheres. In the plane x1-x3, we obtain from
the RTS (3.36), with x20 = p20 = 0, by substituting τ−τ0 from (3.37) instead
of u−u0, the parametric equation of a circle with its center at [x10, x30] and
radius v0(τ − τ0):

(x1 − x10)
2 + (x3 − x30)

2 = [v0(τ − τ0)]
2 . (3.48)

For τ = const this represents the equation of wavefront in the plane x1-x3.
Wavefronts together with a family of rays shot from a point source with
evenly spaced declination are plotted in Fig. 6.

It can be easily shown, using the RTS (3.44), that in a gradient model
the rays are segments of circles. For example, in the model with linearly
increasing velocity in the vertical direction (x3), v(xi) = v0 + a3(x3 − x30),
where v0 is the velocity value at the source depth, v0 = v(xi0) = v(x30)
(v does not depend on x1, x2), (3.44) yields in the plane x1-x3 (i.e., for
x20 = p20 = 0) that

(x1 − x10 −
p30v0

a3

p10)
2 + (x3 − x30 −

v0

a3

)2 = [
1

a3p10

]2 , (3.49)

which is the equation of a circle with the center [x10 + p30v0

a3
p10, x30− v0

a3
] and

the radius 1
a3p10

. It can be shown that the wavefronts are again spheres like
in the previous example of a homogeneous structure. However, in the model
with the vertical gradient of velocity, the center of the spheres is not fixed
— it moves along a vertical line downwards. The expression for the sphere
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radius is also different from that in homogeneous media. In the plane x1, x3,
the wavefronts are circles given by the equation

[x1− x10]
2 + [x3− x30 +

v0

a3

(1− cosh(a3(τ − τ0)))]2 = [
v0

a3

sinh(a3(τ − τ0))]2,
(3.50)

with τ = const. The family of rays and corresponding wavefronts in a
particular gradient model are depicted in Fig. 7.

For general (realistic) models, however, an analytical solution of the RTS
is not available. The equations have to be solved numerically by the use of a
suitable standard procedure (e.g., the Runge-Kutta method or the predictor-
corrector method, etc., see Červený et al., 1988). The step ∆u in the inte-
gration (affecting the numerical efficiency of the computations) depends on
the smoothness of the structure. The accuracy is kept under a prescribed
limit by successive local halving of the step wherever it is necessary. For
details the interested reader is referred to arbitrary textbooks on numerical
methods (see also Press et al., 1996).

Instead of the Cartesian coordinates, it would be also useful to rewrite
the eikonal equation and the RTS into some curvilinear (orthogonal) coordi-
nates, e.g. the spherical coordinates which are of great importance in global
seismology. This can be done by the use of the well known Lame’s scale
factors hi, determined from the expression for the square of the infinites-
imal length element ds2. The spherical coordinates r (radius), θ (colati-
tude) and φ (longitude) are defined by the relations x1 = r sin θ cosφ, x2 =
r sin θ sinφ, x3 = r cos θ. Then, ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 from which
we have the scale factors for the spherical coordinates hr = 1, hθ = r and
hφ = r sin θ. The spherical components of the slowness vector read

pr = τ,r, pθ =
1

r
τ,θ, pφ =

1

r sin θ
τ,φ . (3.51)

The RTS can be written in various forms, for various flow parameters
along the ray. For detailed derivation see Červený (2001). Here let us
present the simplest form for the parameter σ

dr

dσ
= τ,r

dτ,r
dσ

=
1

2

∂

∂r
(

1

v2
) +

1

r
(

1

v2
− τ 2

,r) ,

dθ

dσ
=

τ,θ
r2

dτ,θ
dσ

=
1

2

∂

∂θ
(

1

v2
) +

1

r2

τ 2
,φ cos θ

sin3 θ
,

dφ

dσ
=

τ,φ
r2 sin2 θ

dτ,φ
dσ

=
1

2

∂

∂φ
(

1

v2
).

(3.52)
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The travel time is given by

dτ

dσ
=

1

v2
. (3.53)

The system (3.52) can be modified into a very suitable form by introduc-
ing a new variable % instead of the radial distance r by the relation % = ln r,
and by taking a new flow parameter κ instead of σ: dκ = r−2dσ. The new
form of the RTS then reads

d%

dκ
= τ,%

dτ,%
dκ

=
1

2

∂w2

∂%
,

dθ

dκ
= τ,θ

dτ,θ
dκ

=
1

2

∂w2

∂θ
+
τ 2
,φ cos θ

sin3 θ
,

dφ

dκ
=

τ,φ
sin2 θ

dτ,φ
dκ

=
1

2

∂w2

∂φ
,

(3.54)

with w = r/v. For travel time we have

dτ

dκ
= w2 . (3.55)

The advantage and importance of this modified RTS in the spherical
coordinates will become clear if we deal with less dimensional media. When
considering, e.g., a 2D medium, not depending on the longitude φ, and an
initial slowness direction in the plane φ = const, the RTS (3.54) simplifies
to

d%

dκ
= τ,%

dτ,%
dκ

=
1

2

∂w2

∂%
,

dθ

dκ
= τ,θ

dτ,θ
dκ

=
1

2

∂w2

∂θ
.

(3.56)

This system is of the exactly same form as the 2D RTS (for calculation a
2D ray in a 2D medium) in Cartesian coordinates, provided we transform

x1 → θ, x3 → % = ln r, 1/v2 → w2 = r2/v2 ,

p1 → τ,θ, p3 → τ,%, dσ → dκ = 1/w2dτ.
(3.57)
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This transformation,called the Earth flattening transformation (EFT,
see Miller, 1977, Jobert and Jobert, 1987, or Červený, 2001) finds a lot of
practical use. Thanks to this transformation, any computer program for 2D
ray tracing in Cartesian coordinates can be directly used for 2D ray tracing
in polar coordinates r and θ (and vice versa) by a simple modification of
the input and output data. Also any analytic solution in the plane x1 − x3

can be easily taken into coordinates r, θ by the use of this transformation.
The transformation is also utilized in the program ZRAYAMP, designed for
calculations in a spherically symmetric Earth. The program is described and
documented in Chap. 8.

3.4 Rays as extremals of Fermat’s functional

It can be easily shown that the rays, defined as characteristics of the eikonal
equation, are identical with the curves defined by the Fermat principle. The
Fermat’s principle is sometimes used for an alternative definition of rays, but
such an approach is less general in certain aspects than that applied in the
previous section. For example, when using the Fermat’s principle to derive
rays, the separation of P - and S-waves must be assumed a priori without
clear physical justification. In the approach adopted in this book, the sep-
aration of the P - and S- wavefields has been derived under the assumption
of our form of the solution (i.e., in high-frequency approximation). It has
been derived when obtaining the eikonal equations (see Sec. 3.1), so that
it is natural to calculate rays for the P - and S- waves separately from the
corresponding eikonal equations.

Let us consider the so-called Fermat’s functional

I =

R∫
S

dτ , (3.58)

with τ being the travel time of a signal (in our case seismic) that it needs to
propagate from a fixed point S to another fixed point R. The travel time is
integrated along a curve connecting the two points.

In the Fermat’s principle we seek a curve (integration path) connecting
the points S and R along which the value of this integral is stationary. This
condition means that the variance of the integral, δI, vanishes:

δI = δ

R∫
S

dτ = 0 . (3.59)

The integration path corresponding to the stationary value of the Fermat’s
integral is called the extremal of the Fermat’s functional. In general, there
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may be more than one stationary value and, consequently, more than one
extremal connecting the two points S and R. This case corresponds to the
so-called multipathing – a common situation in seismology accompanied by
multi-valuedness of the travel time between S and R.

Let u be a general monotonic flow parameter along such a curve. It is
convenient to rewrite the functional (3.58) in a parametric form

I =

R∫
S

dτ

du
du =

R∫
S

L(xi, x
′
i)du , (3.60)

where xi = xi(u) and x′i = dxi(u)
du

. In analogy to Hamiltonian mechanics, the
travel time τ plays the role of the action and its derivative along the curve,
L(xi, x

′
i), can be identified as the Lagrangian of the system. As δI = 0, the

Lagrangian satisfies the well known Euler-Lagrangian equations

d

du

(
∂L

∂x′i

)
− ∂L

∂xi

= 0 . (3.61)

Therefore, solving the Euler-Lagrangian equations we can find the extremal
xi = xi(u) of the Fermat’s principle.

In isotropic media, the functional can be simply written as

I =

R∫
S

ds

v
, (3.62)

where v is either α or β (being a function of position: v = v(xi)) and s
is the arclength along the integration path. In Cartesian coordinates, the
infinitesimal length element ds satisfies

ds2 = dxidxi = (dx1)
2 + (dx2)

2 + (dx3)
2 . (3.63)

Thus, ds can be expressed in terms of x′i’s as

ds = (x′ix
′
i)

1/2du , (3.64)

and the functional (3.62) reads

I =

R∫
S

1

v(xi)
(x′ix

′
i)

1/2du . (3.65)
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This equation is already in the parametric form (3.60) with the Lagrangian
L(xi, x

′
i) = v−1(xi)(x

′
ix
′
i)

1/2. Expressing the derivatives of L in equations
(3.61) we obtain

d

du

(
1

v

x′i
(x′ix

′
i)

1/2

)
− ∂

∂xi

(
1

v

)
(x′ix

′
i)

1/2 = 0 . (3.66)

These are the equations for an extremal of the Fermat’s functional in an
isotropic media written using a general flow parameter along the curve. If
we choose specially u = s (i.e., the flow parameter equals the arclength) we
obtain from (3.64) (x′ix

′
i)

1/2 = 1, so that

d

ds

(
1

v

dxi

ds

)
=

∂

∂xi

(
1

v

)
. (3.67)

This equation is exactly in the form of the second-order RTS (3.38) for
u = s (i.e., η = 1). Thus, we have proved that the extremals of the Fermat’s
principle are identical with the rays derived as characteristics of the eikonal
equation.

3.5 Rays as energy flux trajectories

In this section we first prove that in isotropic media, rays are orthogonal to
wavefronts. Then it will be easy to prove that rays represent trajectories
along which the high-frequency part of energy flows because, in isotropic
media, the direction of the energy flux is perpendicular to wavefronts.

Let us assume an orthogonal curve to a wavefront, parameterized by
arclength s, xi = xi(s). The unit vector t, tangent to the curve (ti = dxi/ds),
must be parallel to the slowness vector, since the slowness is perpendicular
to the wavefront by definition. Therefore, it is given by

ti =
dxi

ds
= vpi . (3.68)

The last equality in the above equation is due to the requirement of unit
magnitude of the vector and of its direction parallel to p. The equation
(3.68) represents the first part of the RTS with s as the parameter along
the ray, see (3.40). To derive a complete set of differential equations for the
orthogonal trajectories we must also find equations for dpi/ds. Utilizing the
eikonal equation pipi = v−2 we have
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dpi

ds
=

∂pi

∂xj

dxj

ds
= vpj

∂

∂xj

(
∂τ

∂xi

)
= vpj

∂

∂xi

(
∂τ

∂xj

)
= vpj

∂pj

∂xi

=
1

2
v
∂

∂xi

(pjpj) =
1

2
v
∂

∂xi

(
1

v2

)
=

∂

∂xi

(
1

v

)
.

This represents the second part of the RTS for flow parameter s, compare
(3.40). Thus, the conclusion is that in isotropic media rays are orthog-
onal to wavefronts. This also means that the slowness vector is tangent
to a ray at any point of the ray.

Further let us show that the group velocity vector vg, pointing in direc-
tion of energy flux, is perpendicular to wavefronts. The group velocity is
given as the ratio between the energy flux vector S (analogous to the Poynt-
ing vector known from the theory of electromagnetism) and the total elastic
energy E, which is the sum of the strain energy EW and kinetic energy
EK . The expressions for these quantities are well known from continuum
mechanics:

vg
i =

Si

E
, (3.69)

Si = −cijkluk,lu̇j , (3.70)

E = EW + EK =
1

2
cijklεijεkl +

1

2
ρu̇iu̇i , (3.71)

where εij are strain tensor elements which can be expressed in terms of
displacement u as εij = 1

2
(ui,j + uj,i).

We have to insert our zero order ray solution for u into above energy-
related quantities. However, since the energy expressions are nonlinear in u,
we cannot use the complex-valued form of the solution. We should use only
the real part of it, written in a compact form as u = 1

2
(UF + U∗F ∗), where

the asterisk denotes complex-conjugate quantities. When inserting for u the
corresponding expression for isotropic media ((3.26) for P - and (3.27) for
S-waves), we easily show that the group velocity satisfies (both for P - and
S-waves)

vg
i = vnτ

i , (3.72)

where nτ is the unit vector perpendicular to the wavefront and v is either α
or β. This means that the group velocity vector is parallel to the slowness
vector, i.e., similarly as p, the group velocity vector is tangent to a ray at
any point of the ray. Thus, in isotropic media, rays represent the energy
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flux trajectories under the high-frequency approximation. In other words,
the high-frequency part of the elastic energy flows along rays.

3.6 Ray tracing system in anisotropic media

In anisotropic media, rays can be defined in the same way as we have done
in isotropic models, i.e. as characteristic curves of the eikonal equation. The
eikonal equation can be written in the form (see (3.16))

Gm(xi, pi) = 1 , (3.73)

where m = 1 or 2 or 3.
We rewrite it in the form of the Hamilton-Jacobi equation

H(xi, pi) = 0 ,

by assigning, e.g.,

H =
1

2
(Gm − 1) . (3.74)

As we will see later, the factor 1
2

in H is closely connected with the choice of
the specific parameter along the ray (in this case the travel time τ). When
another flow parameter would be more suitable for a particular application,
the Hamiltonian H should have to be properly modified. The canonical
equations for characteristics then yield

dxi

du
=

∂H

∂pi

=
1

2

∂Gm

∂pi

,

dpi

du
= −∂H

∂xi

= −1

2

∂Gm

∂xi

,

dτ

du
= pi

∂H

∂pi

=
1

2
pi
∂Gm

∂pi

.

(3.75)

It is not difficult to show that, similarly to the elements of the Christoffel
matrix Γij, also its eigenvalues Gm are homogeneous functions of the second
order in pi and they satisfy (due to the Euler’s theorem)

pi
∂Gm

∂pi

= 2Gm . (3.76)

Thus, from the last equation in (3.75) we obtain
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dτ

du
= Gm = 1 (3.77)

(the last equality being the consequence of the eikonal equation (3.73)).
Thus, for our particular choice of H, the flow parameter along the ray is
equal to τ and the RTS reduces to six equations

dxi

dτ
=

1

2

∂Gm

∂pi

,
dpi

dτ
= −1

2

∂Gm

∂xi

. (3.78)

In general anisotropic media, it is not possible to find analytic expressions
for G’s; the eigenvalues are to be found numerically. Nevertheless, we can
make the ray tracing equations (3.78) more explicit by expressing Gm in
terms of Γij (3.3) and components of the corresponding eigenvector g(m).
When multiplying (3.6) by gi (for a given m) and taking into account that
the eigenvectors are unit vectors we immediately obtain

Gm = Γikg
(m)
i g

(m)
k = aijklpjplg

(m)
i g

(m)
k , (3.79)

where aijkl are density normalized elastic parameters, aijkl = cijkl/ρ. Sub-
stituting this Gm into the Hamiltonian in (3.75) or directly to the equations
(3.78) we come to the RTS in the form

dxi

dτ
= aijklplg

(m)
j g

(m)
k ,

dpi

dτ
= −1

2

∂ajkln

∂xi

pkpng
(m)
j g

(m)
l . (3.80)

Likewise in the case of isotropic media, the equations for xi’s and pi’s are
coupled and must be solved together with proper initial conditions xi0 and
pi0. To be physically relevant, the pi0 must be chosen to satisfy the eikonal
equation Gm(xi0, pi0) = 1 at the initial point xi0. If the eikonal equation
is satisfied for the initial conditions, it is satisfied anywhere along the ray
given by the equations (3.80).

It would be possible to rewrite the RTS (3.80) into an alternative form

by expressing analytically the products of g
(m)
i or by the use of a certain

other flow parameter, e.g. the arclength s. For details the reader is referred
to Červený (2001).
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3.7 Notes on the ray tracing system in anisotropic media

In this section we make several comments on rays and the RTS in anisotropic
media.

First, let us realize that the RTS is exactly the same for all the three
waves which can propagate in the given anisotropic model. The type of the
wave must be specified by initial conditions, satisfying the eikonal equation
Gm = 1 for a given m. Thus, in this respect, the initial conditions play
even a more important role in anisotropic than in isotropic media. When
the eikonal equation is satisfied at the initial point of the ray, the RTS keeps
it satisfied along the whole ray, i.e. the type of wave does not change along
the ray. This holds, of course, in smooth media only, for which the RTS has
been derived. At structural interfaces the type of wave may change, see Sec.
3.8.

Second, on the right-hand sides of the RTS equations there are, besides
the elastic moduli (model parameters) and slowness components (RTS solu-
tions), the components of the eigenvectors, corresponding to the given type
of wave. These vectors must therefore be known at each point of the ray.
At each point we have to determine them (numerically) from the equations

(Γij −Gmδij)g
(m)
j = 0, g

(m)
j g

(m)
j = 1 , (3.81)

which, however, does not represent a numerical problem.
Next, let us concentrate on the first part of the RTS — the equations

for dxi

dτ
, the i-th component of a vector tangent to the ray. Compare the

indices of the tangent vector component and of the slowness component on
both sides of the equations: it is i (free index) in dxi

dτ
versus l in pl in the

right-hand side expression aijklplg
(m)
j g

(m)
k . From this we can immediately

conclude that, in general anisotropic media, the tangent vectors to rays
are not generally parallel to the slowness vectors along the rays.
But the slowness is always orthogonal to the wavefront by definition, thus,
in anisotropic media, the rays are not orthogonal to wavefronts like in
the isotropic case. From this it moreover follows that the initial conditions
for pi’s, possibly translated into initial directional angles of the slowness, do
not represent the initial direction of the ray.

Similarly to the isotropic case, even in anisotropic media the rays are
identical with extremals of the Fermat principle, i.e. they are the curves ren-
dering the Fermat functional stationary. However, in anisotropic models, the
proof requires to take into account the so-called second-degree Langrangian,
satisfying the same Euler-Lagrange equations. The modified Lagrangian
allows to apply the Legendre transform between the Lagrangian and the
relevant Hamiltonian and to find directly the Hamiltonian canonical sys-
tem of six ordinary differential equations of the first order (Hamiltonian ray
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equations (3.75)) as a consequence of the Fermat principle. For a detailed
treatment the reader is referred to the paper by Červený (2002).

Further, let us recall the general expressions for the energy-related quan-
tities, see equations (3.69) – (3.71). If we substitute for u the corresponding
(real-valued) anisotropic solution we can easily show that the group velocity
is given as

vg
i = aijklplg

(m)
j g

(m)
k . (3.82)

But this is exactly what stands in the right-hand sides of the equations
(3.80) for dxi

dτ
, having the meaning of components of a vector tangent to ray.

We may thus conclude that in anisotropic media, similarly to the isotropic
case, energy of high-frequency elastic waves flows along rays. How-
ever, in general, the energy does not flow perpendicularly to wavefronts;
it may happen only locally, or for certain special symmetries of the elastic
parameters.

From the numerical point of view, the RTS in anisotropic structures fails
provided two eigenvalues coincide or are close to each other in their values.
In such a case the eigenvectors in the right-hand sides of the RTS are not
determined uniquely from (3.81). This can happen for the two qS-waves
(and the corresponding eigenvalues G1 and G2) either globally or locally.
Globally it means throughout the whole model like in isotropic or weakly
anisotropic media (close to isotropic). In the case of a weak anisotropy a
difficulty arises due to qS-wave coupling and can be avoided by, e.g., various
perturbation approaches (for details see Červený, 2001). However, even in
the case of a stronger anisotropy, G1 may coincide with or be close to G2

locally, in the vicinity of quasi-shear wave singular directions. Let us explain
this using the concept of the so-called slowness surface, see Fig. 8, comparing
the slowness surfaces in an anisotropic (transversally isotropic) and isotropic
model.

At a given point in the model, the slowness surface is represented by the
endpoints of all slowness vectors pointing in all directions

pi = c−1nτ
i , (3.83)

(compare (2.25)), where nτ is the unit normal to wavefront. When we specify
directions of nτ in terms of two take-off angles, the slowness surface can be
regarded as a spherical graph of the phase velocity reciprocal as nτ ranges
over the unit sphere. The slowness (and, consequently, the phase velocity)
is constrained by the condition (3.9). This reduces to cubic equations for
the eigenvalues G (see Sec. 3.1), so, in general, there are three slowness
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Figure 8: An example of slowness surfaces in a typical transversally isotropic
(left) and isotropic medium (right), the p1-p3 cross-section (after Červený,
2001).

surfaces: one for the quasi-P and two for the quasi-S waves. Since the
condition (3.9) is quadratic in pi, the solutions are the same for ±p and the
slowness surfaces have the point symmetry. The slowness surfaces cannot be
folded. Nevertheless, the quasi-S wave surfaces may touch or intersect each
other for certain directions of nτ (so-called singular directions). In these
directions, the eigenvalues G1 and G2 coincide. There are several types of
such singularities, for details see, e.g., Červený (2001). Fig. 8 illustrates
such a situation for a vertical transversally isotropic medium (anisotropic
medium with vertical rotational symmetry). For comparison we see also
slowness surfaces in an isotropic medium (two surfaces, for P - and S- waves).

3.8 Rays across interfaces

Now we know how to calculate rays and travel times in smooth media, both
isotropic and anisotropic. To complete the basics of the ray kinematics it
remains to explain how to calculate rays across structural interfaces (material
discontinuities).

Let us assume two solid halfspaces in welded contact, separated by an
interface Σ which is slightly curved (with radii of curvature much larger than
the prevailing wavelength under study), see figure 9.

Assume a ray incident to this interface. At the point of incidence we
define the unit normal ν to the interface. The requirement of only slight
curvature of the interface ensures that variations of the normal ν to the
interface within the distance of a prevailing wavelength λ are substantially
smaller than unit: λ|∇νi| � 1.

At the point of incidence, the slowness vector of the incident ray, pI, is
known. The normal may be oriented to either side of the interface; let us
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Figure 9: A ray incident to a slightly curved interface, separating two ho-
mogeneous halfspaces, gives rise to rays of a reflected and transmitted wave.
The arrows represent the slowness vectors tangent to the corresponding rays
at the point of incidence.

choose its orientation in such a way that (pI·ν) < 0, i.e., it is oriented into
the first medium (the medium from which the wave incidents). The task
is to calculate rays of generated waves (reflected and transmitted), which
requires knowing their slowness vectors at the point.

We employ the boundary conditions (BC) at the interface. Let us assume
both halfspaces, separated by the interface, to be solid and welded. In
such a case, the BC require the continuity of displacement ui and traction
Ti = cijklνjuk,l across the interface. For another type of the interface (solid-
fluid, solid-vacuum, etc.), the BC should be properly modified, but the basic
idea explained in the following would be the same.

At the point of incidence, the incident wave gives rise to the reflected
and transmitted waves. More specifically, in isotropic media there are, in
general, four generated waves (two reflected and two transmitted), while in
anisotropic media we can have 6 generated waves (three reflections and three
refractions). The BC have to be satisfied by all the waves involved in the
reflection/transmission (R/T) problem. Using the upper indices I, R and T
for the incident, reflected, and transmitted waves respectively, we can write
the boundary conditions in the form of six equations (for i = 1, 2, 3)

uI
i =

K∑
n=1

uTn
i −

K∑
n=1

uRn
i

T I
i =

K∑
n=1

TTn
i −

K∑
n=1

TRn
i ,

(3.84)

48



Ray kinematics

where K is either 2, in the case of an isotropic medium, or 3, for an
anisotropic structure.

The boundary conditions have to be satisfied at any time and at any point
on the interface Σ. The only way to satisfy all the BC universally is that
F and τ in its argument are exactly the same for both the incident wave as
well as for all the generated waves. Following this argument further we find,
that since τ as a function of x must be continuous across Σ (although τ itself
may change along Σ), the same must hold for its derivative in any direction
tangential to Σ. Thus we conclude that tangent slowness components pΣ of
all the generated waves are the same as that of the incident wave, see Fig. 9.

Tangent slowness component, however, is not enough to determine the
complete slowness vector of a generated wave. For this we need to recall the
eikonal equation, constraining the magnitude of the slowness vector.

More specifically, in isotropic media, utilizing the condition pipi = v−2

we can easily derive complete expressions for the slowness vectors pTn , pRn ,
of a transmitted and reflected wave, respectively

pTn
k = pI

k − (pI
mνm)νk + [ 1

(vTn )2
− 1

(vI)2
+ (pI

mνm)2]1/2νk

pRn
k = pI

k − (pI
mνm)νk − [ 1

(vRn )2
− 1

(vTn )2
+ (pI

mνm)2]1/2νk .
(3.85)

Here, vI, vRn and vTn denote the propagation velocity of the incident and
the reflected and transmitted wave we consider, either P - or S- (n equals 1
or 2). Note that the first two terms in the right-hand side of the equations
(3.85), the subtraction of the incident slowness and its component normal
to the interface, represent the tangential component of the slowness of the
R/T waves (known due to the BC). The last term is the normal component
of the slowness vector of the generated wave. The sign in front of this
term is connected with the orientation of the normal ν with respect to the
propagation direction of the considered R/T wave. It is different for the
reflected wave, going back to the first medium, and the transmitted wave,
propagating into the second medium. For the orientation convention we
adopted in the beginning of this section, we have to take the ‘+’ sign in case
of the transmitted wave and the ‘-’ sign for the reflected wave.

It is evident, that the square-bracketed expressions in (3.85) may be of
a negative value yielding a purely imaginary square root. The square root
in (3.85) represents the slowness component normal to the interface. If the
slowness is complex-valued we speak on the so-called inhomogeneous waves.
From (3.85) it follows that such waves can be generated at the interface, for
certain range of the angle of incidence (the acute angle between pI and ν),
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if vTn (or vRn) is greater than vI. In these course notes we deal only with
real-valued slowness vectors and we have not defined rays corresponding to
a complex-valued travel time. In the theory explained here, the rays of
inhomogeneous waves are not calculated. Henceforth, we restrict ourselves
to waves (and rays) with real-valued slownesses.

Alternatively, instead of using the general expressions (3.85) for the com-
plete slowness of the generated waves, we can determine the slownesses pTn

and pRn from their magnitudes (given by the corresponding eikonal equa-
tions) and their directions. The directions, expressed in terms of the angles
of reflection and transmission (defined as acute angles between the normal ν
and the slowness of the corresponding R/T wave), can be found knowing the
magnitudes and the tangential components. The equality of the tangential
components of a transmitted wave and the incident wave, can be written in
the form of the well known Snell’s law

sin iTn

vTn
=

sin iI

vI
. (3.86)

The same formula would arise equating the tangential components of a re-
flected wave and the incident one except the upper index Tn would be re-
placed by Rn. Snell’s law, yielding the direction, together with the eikonal
equation, giving the magnitude, can be used equivalently to (3.85) to find
the complete slowness vector of any wave generated at the interface. Both
approaches involve the cases of possible wave conversions (P to S or S to
P ) by specifying the proper velocity of the generated wave.

The equality of the tangential components of the slownesses of all the
generated waves and that of the incident wave is a universal principle valid
both in isotropic as well as in anisotropic models. We can write a formula
analogical to (3.86) even for anisotropic media

sin i(m)

v(m)(i(m))
=

sin iI

vI(iI)
, (3.87)

where the given generated wave is specified by m = 1, 2, . . . , 6. However,
in contrast to the isotropic case, this formula cannot be used to determine
direction of the slowness vectors of generated waves, since in anisotropic
media velocity is directionally dependent.

In anisotropic structures the only way how to find complete slownesses
of generated waves is to constrain the normal components by the use of the
condition of solvability of the eigenvalue problem (3.9). In the condition, let
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us substitute for Γij the corresponding expression quadratic in slowness, and
decompose the slowness of the generated wave into its tangential component
pΣ, which is known (common for all the involved waves), and the normal
component pν = |pν |ν, which we seek. Then, assigning G = 1, the condition
(3.9) becomes a sixth-order algebraic equation for |pν |

det[aijkl(p
Σ
i + |pν |νi)(p

Σ
l + |pν |νl)− δik] = 0 . (3.88)

The density normalized medium parameters aijkl in (3.88) are specified either
to correspond to the first halfspace, in case we are interested in reflected
waves, or to the second halfspace, if we want to trace the rays of transmitted
waves. In both cases, only three solutions for the slowness normal |pν | are
physically relevant. Nevertheless, from (3.88) we generally get six roots. The
selection criterion for the solution is the direction of wave propagation (into
the correct halfspace) away from the interface. Physically, the direction of
propagation is the direction in which energy of the wave flows. This is also
the direction tangent to ray. Thus, we select the correct solutions according
the corresponding group velocity (3.82): for reflections it must point into
the first halfspace, while for transmitted waves into the second one. Since,
in general anisotropy, the direction of the group velocity differs from the
direction of the phase velocity (i.e., direction of the slowness vector), it may
happen that, for example, the slowness of a reflected wave points into the
second halfspace what we could intuitively expect rather for transmitted
waves. Such situations, quite common in anisotropic models, never happen
in isotropic media in which directions of the group and phase velocities (and
also that of the slowness vector) coincide.

For a given elementary wave, knowing the formulas and rules to find
slowness vectors of the waves generated by the wave incident at some slightly
curved interface, we can continue tracing rays after interaction with the
interface by setting the slowness of the required R/T wave as a new initial
condition for the RTS at the point of incidence. In this way we are able
to calculate rays (and travel times) not only throughout smooth continuous
models, but also in models containing smooth layers or blocks separated by
sharp structural discontinuities, both in isotropic and anisotropic media.
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Before proceeding to the ray dynamics, based on the solution of the transport
equations, see Sec. 2.5, we have to introduce two new coordinate systems,
related to rays, which are extremely useful when computing ray amplitudes.
These are namely the ray-centered coordinates and the ray coordinates. De-
spite similar names, their definition and properties are considerably differ-
ent. The ray-centered coordinates are defined and discussed in section 4.1
for isotropic models in which they are used with advantage to simplify the
evaluation of amplitudes, as the corresponding coordinate basis vectors are
closely related to the ray amplitude polarization vectors. For completeness,
analogous coordinates in anisotropic media are briefly mentioned at the end
of Sec. 4.1. In the following text, however, they are not applied to calculate
amplitudes in anisotropic media. The second of the coordinate systems pre-
sented in this chapter, the ray coordinates, is introduced in the section 4.2.
It is defined in exactly the same way both in isotropic as well as anisotropic
structures and in both these cases it is equally important for ray dynamics
(see Chap. 5).

4.1 Ray-centered coordinates

The ray-centered coordinates (RCC) are very useful in a close vicinity of the
ray. This ray, which can be considered as one axis of the RCC system, is
called the central ray. Let us assume a central ray Ω and a point M in its
vicinity, the position of which we want to describe using the RCC q1, q2, q3,
see figure 10.

Figure 10: Ray-centered coordinate system.

A principal role in the RCC system is played by the plane perpendicular
to the central ray, which passes through the point M. Having such a plane
it is very simple to explain the physical meaning of the coordinates. The

52



Two important ray-based coordinate systems

last of the three numbers, q3, has the meaning of a flow parameter along the
ray u (mostly the arclength s). We have to specify an initial reference point
u0 on the central ray from which we can determine uniquely the position of
any point on the ray. In the RCC, q3 = u − u0 determines the position of
the point being a perpendicular projection of the point M to the central ray,
i.e., the cross-section of the perpendicular plane and the central ray. The
other two coordinates, q1 and q2 are the Cartesian coordinates of M in this
perpendicular plane with the origin on the ray, see Fig. 10.

It is clear from how the coordinate system is constructed that it is regular
only provided there is only one possible perpendicular plane from M to the
central ray. Therefore, when using the RCC, we restrict ourselves to a small
vicinity of the central ray (small in terms of q1 and q2), i.e. to distances
much smaller than the radius of curvature of the central ray, so that there
cannot be more than one perpendicular projection of M to the ray.

We define the RCC basis vectors in such a way that they represent an
orthogonal right-handed triplet of unit vectors e1, e2, e3 at any point on the
central ray specified by q3. Note that along the ray, their position in space
generally change, but in an exactly defined way. The vector e3, correspond-
ing to the coordinate q3, is the unit vector tangent to the ray (which we
know from the RTS). The remaining two vectors are not only arbitrary unit
vectors, mutually perpendicular and perpendicular to e3, but they are de-
fined under the requirement of orthogonality of the coordinate system. This
requirement is equivalent to the requirement of the so-called parallel trans-
port of the vectors e1, e2 along the central ray. It means that a change of
these vectors along the ray is parallel to a vector tangent to the ray. In
other words, the two vectors do not rotate around the ray (more specifi-
cally: around the tangent to the ray). Using the flow parameter s this can
be written as

deI(s)

ds
= aI(s)p(s) , (4.1)

where aI is a continuous function of s, I = 1, 2 (henceforth we keep the
following index convention: an upper-case index is of values 1 or 2 while a
lower-case index ranges from 1 to 3) and p is the slowness vector. This is
the condition the RCC basis vectors eI satisfy, but without knowing aI , the
equation (4.1) cannot be used to compute the vectors along the ray.

The factor of proportionality aI in (4.1) can be easily found. By multi-
plying (4.1) with p, and using the eikonal equation (3.32), we come to
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aI(s) = v−2 deI(s)

ds
· p . (4.2)

This can be rewritten realizing that, in isotropic media, eI is perpendicular
to p, so that eI(s) · p(s) = 0. Taking the derivative of this scalar vectorial
product with respect to s, which must also be equal to zero, we immediately
obtain the equality deI/ds · p = −eI · dp/ds. When substituting this into
(4.2), the equation becomes

aI(s) = −v2eI(s) ·
dp(s)

ds
. (4.3)

Taking further into account the RTS equations dp(s)/ds = ∇(1/v) =
−v2∇v we obtain finally (4.1) in the form

deI

ds
= (eI · ∇v)p . (4.4)

Note that this equation is invariant with respect to a change of the flow
parameter along the ray — it can be written in exactly the same form for
any other suitable parameter, e.g., τ .

To summarize, the vectors eI are defined to be unit, mutually perpendic-
ular, attached to the central ray, belonging to the plane orthogonal to the
central ray at any point of this ray, forming a right-handed triplet with e3,
and subject to the equation (4.4). At a given reference point of the central
ray, the vectors can be chosen to be rotated arbitrarily in the perpendic-
ular plane. Then, at all the other points x(s) of the ray, their direction
is uniquely determined by (4.4). In practice, the equation (4.4) is usually
solved for only one of the two vectors eI ; the other one is determined to
complement (together with e3 = t) the right-handed triad of unit mutually
perpendicular vectors.

As it has been already mentioned above, an important consequence of
the equation (4.4) is that it guarantees the RCC being orthogonal. The
orthogonality of a coordinate system is defined in such a way that its metric
tensor gij is diagonal. The metric tensor relates the square of the length
element dl with the relevant coordinates (in our case qi): (dl)2 = dr · dr =
gijdqidqj with r being radiusvector. It can be shown, see Červený (2001),
that, provided (4.4) is satisfied, the only non-vanishing elements of gij are
those for i = j.
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Employing differential geometry of rays, one could take into account an-
other important right-handed triplet of mutually perpendicular unit vectors,
attached to the ray, known as the Frenet trihedral (see, e.g., Pujol, 2003).
The trihedral consists of the unit tangent vector t and the so-called nor-
mal n and binormal b. For those familiar with this concept let us clarify
the difference between the two mentioned vector triplets: the RCC basis ei

and the trihedral n,b, t. It may help to elucidate even more the properties
and behavior of the RCC basis. The vectors e3 and t coincide. In contrast
to eI , the normal and binormal rotates around ray. The variation of b is
perpendicular both to b and t, so that it is parallel to n

db

ds
= −T (s)n , (4.5)

where T is known as the torsion of the curve (ray, in our case). The torsion
is related to the so-called Rytov angle ϕ, dϕ/ds = T (s), see also figure 11
comparing the two triplets along ray. Let us emphasize that a coordinate
system based on the Frenet trihedral would not be, in general, orthogonal.
Nevertheless, it would be always possible to calculate easily eI knowing the
Frenet trihedral, for details see Čerevný (2001) or Pujol (2003).

Figure 11: Ray-centered basis vectors and the Frenet trihedral (after
Červený, 2001).

For in-plane rays (in 2D and 1D ray modeling) the vectors eI can be
evaluated easily without solving the equations (4.4), since the rays have
zero torsion. In smooth media, if we specify one of the vectors, for example
e2, to be perpendicular to the plane of the ray at one reference point, it
remains perpendicular to it along the whole ray. Thus, knowing the ray
we automatically know, besides the vector e3, also the vector e2 at each
point of the ray. The third RCC basis vector is then computed easily to
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complement the right-handed triplet of mutually orthogonal vectors. At
structural interfaces we can, in principle, specify the vectors eI arbitrarily
and use them as ‘initial conditions’ for computations continuing in the next
smooth part of the medium. Nevertheless, it is useful to specify them in a
consistent way. For example, in the case of in-plane calculations mentioned
above it is useful to consider e2 being perpendicular to the plane of the ray
also at the interfaces.

The importance of the RCC system in the ray-based modeling of seismic
wavefields in isotropic structures is two-fold. First, they are useful in the
so-called paraxial seismics when the wavefield is approximated not exactly
on the ray but also in a close vicinity of such a ray. Restricting our con-
siderations to a close vicinity of the ray ensures the regularity of the RCC
(see above) and enables small values of q1, q2 only. This allows the omission
of terms of a higher than second-order in qI ’s in relevant equations both
in ray kinematics as well as in ray dynamics. Second, in isotropic media,
the RCC basis vectors are used as a frame to describe the direction of the
displacement vector, i.e., the direction of the ray amplitude U, at a point
on the ray. More specifically, the vector e3 = t determines the amplitude
direction of the linearly polarized P - wave, while the vectors e1 and e2 de-
termine the polarization of an S- wave. The ray amplitudes, expressed in
the RCC system, then read

UP = (0, 0, A)T

US = (B,C, 0)T ,
(4.6)

where the symbol T indicates that the vectors are transposed. The quantity
A is the magnitude of the P -wave amplitude |UP | = A, while B and C
can be viewed as Cartesian coordinates of the S- wave amplitude vector in
the plane perpendicular to the ray, with respect to the basis eI . Later it is
shown that the direction of the S-wave amplitude vector remains fixed with
respect to e1 and e2 along the entire ray, i.e., US is transported parallel
along the ray in the same way as the vectors eI .

In seismological calculations the amplitudes are commonly expressed in
Cartesian coordinates related to the structure and not in the RCC. Let
us introduce the transformation matrix H from the RCC to the general
Cartesian coordinates x1, x2, x3, with the basis vectors i1, i2 and i3. The
elements of the transformation matrix

Hkl =
∂xk

∂ql
(4.7)
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are, in general, relatively difficult to express. However, on the central ray
(i.e., for qI = 0) the corresponding expressions are simple. At a point R,
situated on the central ray, the transformation matrix from the RCC to the
general Cartesian coordinates is given by

Hkl(R) = ik · el(R) . (4.8)

It can be shown (see Červený, 2001) that H is orthonormal along the central
ray, i.e.

H−1(R) = HT (R), detH(R) = 1 . (4.9)

Instead of the RCC defined and discussed above, it is sometimes useful
(and sufficient) to introduce a local Cartesian system with its origin at a
specified point (for example, the receiver) on the central ray Ω and with
the basis vectors coinciding with the RCC basis vectors at this point. Such
a coordinate system is called the local ray-centered Cartesian coordinate
system. Note the basis vectors of this Cartesian system and the RCC basis
vectors coincide mutually only at the point at which the local system is
introduced; in any other point they depart from each other. The RCC basis
vectors vary along the ray while the basis vectors of the local ray-centered
Cartesian system remain constant in space.

In this section we have up to now assumed an isotropic model. In ani-
sotropic media, analogous coordinate systems to the above-mentioned could
be introduced as well. Probably the most important are the so-called wave-
front orthogonal coordinates (WOC) which are at any point of a given
ray analogous to the local ray-centered Cartesian system specified at that
point. More specifically, the third coordinate axis (the third basis vector)
is parallel to the slowness vector at any point on the ray and the remaining
two basis vectors are analogous to the vectors eI , i.e. they are tangent to
the wavefront and satisfy equations similar to (4.4). Note that the system
is orthogonal, but the important difference to the RCC in isotropic media
is, that the basis vector parallel to the slowness is not, in general, tangent
to the ray. In contrast to the RCC in isotropic models, the ray Ω is no
longer a coordinate line in the WOC in anisotropic structures. Note that
the basis vectors of this system are not, in general, related in any way to the
amplitude polarization vectors which are uniquely determined by solving the
eigenvalue problem (3.7). Thus the importance of these coordinates is not
in a simple way to express the ray amplitudes, like in the case of isotropy.
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Nevertheless, the system is useful in paraxial seismic and it allows to calcu-
late easily some other quantities related to amplitudes, like for example, the
so-called geometrical spreading of rays (see Sec. 5.1 and 5.3).

4.2 Ray coordinates

Up to now we have treated, implicitly or explicitly, only a single ray. It
was a ray specified by its initial conditions and calculated by the use of the
RTS in a smooth structure, or possibly transformed across an interface in a
layered/blocky structure. Such a single ray may also represent one axis (the
so-called central ray) in the RCC system introduced in the previous section.
In this section we extend our considerations to the so-called ray fields: the
sets of rays, belonging to a certain elementary wave, that correspond to a
continuous range of initial conditions.

In general 3D problems, the initial conditions can be parameterized by
two parameters, say γ1, γ2. The physical meaning of the two parameters may
be various; for example, in the case of a point source, γI parameterize the
initial slowness (in terms of take-off angles from the source, two slowness
components, etc.). Note that the so-called ray parameter introduced in
Sec. 3.3 as the horizontal slowness component, being constant along ray
in 1D structures, can be understood as a special case of such a parameter
γI (I = 1 for in plane rays). Let us emphasize that the parameters γI

specify uniquely the ray in a given ray field by parameterizing the initial
conditions. There are also other alternatives, how to specify the ray by the
parameters γI . For example, when the position of the initial point of the ray
may vary along a certain surface while the direction of the ray is fixed (e.g.,
rays orthogonal to wavefronts or to a structural interface in the so-called
‘exploding reflector’ approaches), the parameters γI can be coordinates of
the point on the surface. In any case it is important that the parameters
uniquely determine the ray in the ray field. This is why we call them the
ray parameters.

Figure 12: Ray coordinates γ1, γ2, γ3.
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Let us assume a ray field and a point M, the position of which we want
to describe using the ray coordinates γ1, γ2, γ3, see figure 12. The first two
coordinates, γI , have the meaning of the ray parameters specifying the ray
passing through the point M. The third one, γ3, represent a flow parameter
u (common choices are u = s, u = τ , etc.) specifying the position of the
point M on the given ray.

In general, the RC system is not orthogonal. Moreover, it cannot be used
in shadow zones of the ray field (regions not illuminated by rays), or, on the
contrary, if more than one ray passes through a given point M (the case of
multipathing). In such situations the RC system is not regular.

From what has been said so far it is clear that the ray travel time τ , one
of the two quantities determining the zero-order ray solution (see Sec. 2.4),
is in fact calculated as a function of γi, rather then xi. In the next chapter
we will see that the same holds also for the second of the two quantities,
the ray amplitude. Nevertheless, the regularity of the RC system means
that the mapping between xi’s and γi’s is regular. Then x can be expressed
parametrically in terms of the RC: x = x(γ1, γ2, γ3). This can be viewed
as the parametric equation of the ray specified by the ray parameters γ1, γ2

(i.e., for γI fixed), or the equation of the surface of constant γ3 with variable
γI (e.g., the wavefront in the case of γ3 = τ = const).

Let us denote by Q the transformation matrix from the RC to general
Cartesian coordinates: Qij = ∂xi

∂γj
. The regularity of the RC system can be

defined by the use of the Jacobian of this transformation

J (u) =
D(x1, x2, x3)

D(γ1, γ2, γ3)
= detQ =

∣∣∣∣∣∣∣∣∣
∂x1

∂γ1

∂x1

∂γ2

∂x1

∂γ3

∂x2

∂γ1

∂x2

∂γ2

∂x2

∂γ3

∂x3

∂γ1

∂x3

∂γ2

∂x3

∂γ3

∣∣∣∣∣∣∣∣∣ , (4.10)

i.e. the system is regular wherever this Jacobian does not vanish. In complex
media, J (u) vanishes on so-called caustic surfaces, curves or points, see Sec.
5.4. Note that since γ3 = u, the last column in (4.10), (∂x1

∂u
, ∂x2

∂u
, ∂x3

∂u
)T ,

is given by solution of the relevant RTS. Several ways how to calculate
the complete Jacobian are briefly discussed in section 5.2. One of them is
explained in a greater depth in Sec. 5.3.

Specially, for u = s, we will denote the Jacobian by J and call it as
the ray Jacobian. It plays a very important role in the calculation of ray
amplitudes. The ray Jacobian can be also expressed as

J =

(
∂x

∂γ1

× ∂x

∂γ2

)
s=const

· t , (4.11)

where t is the unit vector tangent to ray. Note finally that the square root√
J is usually called the geometrical spreading.
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In the previous chapter we defined certain quantities important in ray dyna-
mics, namely the ray Jacobian and the geometrical spreading. How do these
quantities relate to ray amplitudes? This can be explained by evoking the
concept of the so-called ray tube. This concept allows us to find an analytical
solution to the transport equation for scalar amplitude factors (see Sec. 5.5)
along rays. This leads to the equation known as the continuation formula:
it enables us to determine the scalar ray amplitude at a point on the ray
provided the amplitude is known at some other (usually initial) point on the
same ray. The initial amplitudes may be defined by introducing the so-called
radiation function, as it is explained in the section 5.8. Special attention is
devoted to the calculation of the ray amplitudes across structural interfaces
by the use of proper reflection/transmission (R/T) coefficients. The chapter
ends with expressions for the ray theory Green’s function in a layered or
blocky medium, both isotropic as well as anisotropic.

5.1 Ray tube

Let us consider a family of rays, belonging to a certain ray field, with the ray
parameters γI being in the interval (γ1, γ1 + dγ1)× (γ2, γ2 + dγ2). This ray
family, defined by the ray parameter perturbations dγ1 and dγ2, represents
the so-called elementary ray tube. A part of such a tube, bounded by
two wavefronts at times τ0 and τ , is depicted in figure 13.

Figure 13: Section of an elementary ray tube (after Pšenč́ık, 1994).

Intuitively, it can be expected that in the parts of the model characte-
rized by the focusing of rays, where the ray tube becomes narrow, the ray
amplitude should increase in inverse proportion. On the contrary, where
the rays spread, the amplitude is expected to decrease. This behavior is
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a consequence of conservation of energy and the fact that energy (its high-
frequency part) flows along rays. It is quantified by the continuation formula
(see Sec. 5.6). For now, we just take into account that in evaluating the
ray amplitudes the principal role is played by the cross-sectional area of the
elementary ray tube. In the following we show how to express the cross-
sectional area in terms of the ray Jacobian J .

Let us consider the area of that portion of the relevant wavefront, cut
out by the given elementary ray tube – see the shaded areas in Fig. 13.
From differential geometry, the vectorial surface element cut out from the
wavefront is given by the vectorial product of two vectors tangent to the
wavefront as

dS(τ) =

(
∂x

∂γ1

× ∂x

∂γ2

)
τ=const

dγ1dγ2 . (5.1)

This vector is, by definition, normal to the wavefront. In isotropic media it
is moreover tangent to rays and its magnitude has the meaning of the cross-
sectional area of the ray tube (in the direction perpendicular to the tube).
In a general anisotropic case, however, the vector dS(τ) differs in its direction
from rays (i.e., from the direction of the group velocity, see Sec. 3.7). The
cross-sectional (scalar) surface element can be obtained by projecting the
vector dS(τ) into the direction of t (the unit vector tangent to the ray at a
point of interest)

dS⊥ = dS(τ) · t . (5.2)

Note that it is possible to apply the formula (5.2) even in isotropic media.
There

dS⊥ = dS(τ) · t = ±|dS(τ)| , (5.3)

where ± indicates that dS(τ) may be oriented in or against the direction of
t (it is controlled by mutual orientation of the vectors ∂x

∂γI
, tangent to the

wavefront, see (5.1)). In anisotropic media, the projecting of dS(τ) does not
only determine the sign but also modifies the magnitude of the resulting
scalar cross-sectional surface element.

Let us quantify the difference in directions of the vectors t (the unit
tangent to ray) and dS(τ) in a general anisotropic structure by the angle Φ
between these two vectors. The vector t is parallel to the group velocity
vector vg, so that t = vg/|vg|, while the vector dS(τ), normal to wavefront,
is parallel to the slowness vector p, and the unit normal to wavefront nτ ,
see the figure 14. Thus, Φ is given by
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cos Φ = nτ · t = cp · vg

|vg|
=

c

vg
, (5.4)

where c denotes the phase velocity and vg = |vg| is the group velocity
magnitude. In the above equation, the well known identity

piv
g
i = 1 (5.5)

is used. This identity is obvious for isotropic models, but it is also valid in
anisotropic structures. It can be simply derived as follows:

piv
g
i = piti|vg| = ∂τ

∂xi

dxi

ds

ds

dτ
=

∂τ

∂xi

dxi

dτ
=

dτ

dτ
= 1 . (5.6)

In the above equation we have used ds
dτ

= vg = (vg
i v

g
i )

1/2 which is a con-

sequence of the RTS (3.80), namely dxi

dτ
= vg

i , see Sec. 3.7. Note that in
isotropic models, Φ = 0◦.

Figure 14: Vectors normal to the surfaces of constant s (AB’C’D’) and τ
(ABCD) differ by angle Φ.

Similarly to (5.2), the cross-sectional surface element can be obtained by
the use of the projection of any other vectorial surface element dS(u), cut
by the ray tube from a surface of constant u, into the vector t. Especially,
in the case of u = s we have, similarly as for the wavefront in an isotropic
medium, dS⊥ = dS(s) · t = ±|dS(s)|, since S(s) is always parallel to ray (i.e.,
the relevant cross-section is perpendicular to ray).

It is easy to express dS⊥ in terms of the ray Jacobian J . From (4.11) we
see that

dS⊥ = dS(s) · t = Jdγ1dγ2 . (5.7)
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However, dS⊥ can be expressed from (5.2) in terms of J (τ) as well:

dS⊥ = dS(τ) · t = J (τ) dτ

ds
dγ1dγ2 = J (τ)(vg)−1dγ1dγ2 . (5.8)

Comparing the above two equations we also obtain the relationship between
J and J (τ)

J (τ) = vgJ . (5.9)

This formula is general, valid both for anisotropic and isotropic media. In
the case of isotropic media we can moreover substitute v (α or β) for vg.

5.2 How to calculate the ray Jacobian

There are several ways to evaluate J at a point on a ray in smooth media.
Namely:

1. It is possible to use a relatively robust, approximate approach in which
the differentials dγI and dS⊥ in (5.7) are substituted by finite differ-
ences ∆γI and ∆S⊥. The ray Jacobian at a point A on a ray Ω is then
approximated as

J =̇
∆S(⊥)

∆γ1∆γ2

. (5.10)

This approach requires us tracing additional rays, nearby to the ray of
interest and differing in their ray parameters by ∆γI , to simulate the
ray tube (see Fig. 1). On these rays we find the points corresponding
to the same wavefront as the point A – i.e. the points B, C and
D. Then we in fact “measure” numerically the area of the rectangle
ABCD which yields approximately the scalar surface element ∆S(τ).
It is also possible to trace only two nearby rays and approximate the
area of the rectangle by taking twice the area of the triangle ABD, see
Fig. 1.

In isotropic media, rays are orthogonal to wavefronts, so that ∆S(τ)

represents ∆S(⊥) in (5.10) and we can write

J =̇
∆S(τ)

∆γ1∆γ2

. (5.11)

In anisotropic models, ∆S(τ) differs, in general, from ∆S⊥. It should
be recalculated using the angle Φ, introduced in the previous section
(see (5.4)). Then
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Figure 15: “Finite-difference” approximation of J at a point A
on the ray of interest.

J =̇
c

vg

∆S(τ)

∆γ1∆γ2

. (5.12)

Note that the above formulas allow us to determine only the absolute
value of J . From (4.11) we see that the sign is given by mutual orien-
tation of the vectors ∂x

∂γI
. These vectors can be easily modeled using

the nearby rays replacing the derivatives by finite differences.

In 2D and 1D structures, when dealing with in-plane rays, the situa-
tion is simpler. Instead of two or three neighboring rays only one is
necessary to calculate. J is approximated by measuring the length of
the straight line element connecting the point of interest and the point
with the same travel time, situated on the neighboring ray.

2. Another possibility is to apply the so-called dynamic ray tracing
(DRT) system. It is the system of additional linear differential equa-
tions solved along the ray of interest, so that no nearby rays are needed.
The system yields, among others, the quantities ∂xi/∂γI , which, sup-
plemented with ∂xi/∂γ3, known from the RTS, are necessary to eval-
uate the complete matrix Q and therefore J = detQ. This approach
is not only approximate like that of finite differences – it is exact. The
DRT system is not difficult to derive (see Sec. 5.3). It is also easy
to solve the system along the ray because the equations are linear. It
should be noted that the DRT is not only a tool to obtain J along
the ray, it has many other important applications, mainly in paraxial
seismic (see, for example, Beydoun and Keho, 1987).

3. In homogeneous media, both isotropic and anisotropic, the ray Jaco-
bian can be calculated analytically. Let us show this for the case of a
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point source in an isotropic medium and the ray parameters represent-
ing take-off angles from the source, the declination ψ0 and the azimuth
ϑ0: γ1 = ψ0 and γ2 = ϑ0. Rays x(γ1, γ2) are straight lines

x1 = l sinψ0 cosϑ0, x2 = l sinψ0 sinϑ0, x3 = l cosψ0 ,
(5.13)

where l denotes the distance from the source (length of the ray), so
that it has the meaning of the arclength parameter s. Expressing the
derivatives ∂xi

∂γI
, and ∂xi

∂s
and evaluating the relevant determinant (4.10)

we immediately obtain

J = l2 sinψ0 . (5.14)

5.3 Dynamic ray tracing

Dynamic ray tracing (DRT) is a procedure that allows us to compute the
first two columns of the matrix Q (see equation (4.10)) by solving a system of
several linear ordinary differential equations of the first order along the ray.
Together with solving the RTS, yielding the third column of the matrix, the
DRT provides the possibility of direct evaluation of detQ and thus obtaining
the geometrical spreading without the necessity of tracing any auxiliary
nearby rays. Moreover, in this way the geometrical spreading is computed
exactly in contrast to the approximate simulation of an elementary ray tube
by the finite difference approach mentioned in the previous section.

The DRT equations can be expressed either in Cartesian, or RCC (WOC)
coordinates. Probably the simplest it is to derive the DRT system of equa-
tions in Cartesian coordinates by differentiation of the RTS with respect to
the ray parameters γI . We seek the elements of the transformation matrix
from the RC to the general Cartesian coordinates

QiJ =

(
∂xi

∂γJ

)
γ3=const

. (5.15)

(let us recall that the lower-case index runs from 1 to 3, while the upper-case
one from 1 to 2). In analogy let us denote

PiJ =

(
∂pi

∂γJ

)
γ3=const

=

(
∂2τ

∂xi∂γJ

)
γ3=const

. (5.16)
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The quantitiesQiJ , complemented by the elementsQi3 = (∂xi/∂γ3) (with
constant γI), which are known from the RTS as ∂xi/∂u (with u being a flow
parameter along the ray), constitute the matrix Q. Differentiating dxi/du
with respect to γJ yields the equation for the change of QiJ along the ray

∂

∂γJ

(
dxi

du

)
=

d

du

(
∂xi

∂γJ

)
=

d

du
QiJ , (5.17)

where all the derivatives with respect to γJ are considered for constant γ3

(i.e., constant u). Similarly, by differentiating dpi/du from the RTS with
respect to γJ results in the equation for the change of PiJ along the ray.

In anisotropic media we have derived the RTS (3.78), with the flow pa-
rameter τ , so that we consider γ3 = u = τ . From (5.17), utilizing (3.78), we
obtain

d

dτ
QiJ =

∂

∂γJ

(
dxi

dτ

)
=

1

2

∂

∂γJ

(
∂G

∂pi

)
=

1

2

(
∂G

∂pi∂xk

∂xk

∂γJ

+
∂G

∂pi∂pk

∂pk

∂γJ

)
,

(5.18)

where we have omitted the index m (the type of wave). For d
dτ
PiJ we proceed

analogously. Utilizing the notation (5.15) and (5.16) we finally obtain the
DRT in the form of the system of twelve linear ordinary differential equations

d

dτ
QiJ =

1

2

(
∂2G

∂pi∂xk

QkJ +
∂2G

∂pi∂pk

PkJ

)
d

dτ
PiJ = −1

2

(
∂2G

∂xi∂xk

QkJ +
∂2G

∂xi∂pk

PkJ

)
.

(5.19)

The DRT equations for d
du
QiJ and d

du
PiJ are coupled and must be solved to-

gether (in analogy to the coupled RTS equations for xi’s and pi’s). Among
these twelve equations, only eight are independent because elements of QiJ

and PiJ are constrained by four additional conditions. Two of the constraint
conditions are due to the fact that the slowness vector, orthogonal to wave-
front by definition, must be perpendicular to the wavefront tangent vectors
∂xk/∂γJ (with constant τ). Thus we have

piQiJ = 0 . (5.20)

The other two constraints can be obtained by differentiating the eikonal
equation G = 1 with respect to γJ while taking into account the RTS (3.78).
Thus, we can write

∂G

∂xi

QiJ +
∂G

∂pi

PiJ =
dpi

dτ
QiJ −

dxi

dτ
PiJ = 0 . (5.21)
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This allows us to reduce the DRT system for 2×2 matrices with elementsQIJ

and PIJ and calculate the remaining Q3J , P3J from the constraints. Initial
conditions for the system are briefly discussed later.

In isotropic media we can derive the DRT system analogously from the
RTS (3.39). This is equivalent to specifying G = v2pipi with v written for α
or β. Inserting the corresponding derivatives of our G into the system (5.19)
leads to

d

dτ
QiJ =

∂v2

∂xk

piQkJ + v2PiJ

d

dτ
PiJ = −1

2

∂2v2

∂xi∂xk

v−2QkJ −
∂v2

∂xi

pkPkJ .

(5.22)

The constraint conditions are the same as in anisotropic media, only (5.21)
can be made more explicit substituting from the RTS and writing thus
v−3v,kQkJ = −pkPkJ .

The equations of the DRT system are linear and it is not difficult to solve
them for proper initial conditions. In homogeneous models, the system can
even be solved analytically. Nevertheless, even in complex media in which
the system has to be integrated numerically, the numerical effort exerted is
usually much less than that put forth to solve the RTS.

The initial conditions depend on the parameterization of the ray field
(i.e., the type of the ray parameters γI). They also differ in the case of a
point source or the case of rays starting at a smooth initial surface. Let
us present here an example of the point source initial conditions for their
particular importance in practice. Let us derive them first in the easier case
of an isotropic medium.

For the ray parameters chosen as the ray take-off angles at the source
point (i.e., γ1 = ψ0, the declination, and γ2 = ϑ0, the azimuth) we can specify
the initial slowness vector as p(τ0) = v−1

0 nτ0 = v−1
0 (sinψ0 cosϑ0, sinψ0 sinϑ0,

cosψ0)
T , where v0 denotes α or β at the source point and the upper index

τ0 indicates that the normal to wavefront, nτ , also corresponds to the source
point (specified by the parameter τ0). Differentiating the slowness compo-
nents pi(τ0) = v−1

0 nτ0
i with respect to γI yields

PiJ(τ0) = v−1
0

∂nτ0
i

∂γJ

. (5.23)

Explicitly, it is
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P11(τ0) = v−1
0 cosψ0 cosϑ0, P12(τ0) = −v−1

0 sinψ0 sinϑ0,

P21(τ0) = v−1
0 cosψ0 sinϑ0, P22(τ0) = v−1

0 sinψ0 cosϑ0,

P31(τ0) = −v−1
0 sinψ0, P32(τ0) = 0 .

(5.24)

The point source initial conditions for QiJ are simply

QiJ(τ0) = 0 , (5.25)

since all the rays start from the same point and thus the change of xi(τ0)
from one ray to another is zero, so that ∂xi

∂γJ
(τ0) = 0. Note that these initial

conditions for QiJ make the ray Jacobian and, consequently, the geometrical
spreading vanish at the point source.

In anisotropic media we can use the same parameterization of the point
source ray field, but the take-off angles determine the initial slowness direc-
tion which, in general, differs from the initial ray direction. Nevertheless, the
initial take-off angles of the slowness uniquely determine the corresponding
ray in the ray field. As above, for QiJ(τ0) at a point source we can write

QiJ(τ0) = 0 . (5.26)

To obtain the initial conditions for PiJ we need to consider the derivatives
of pi(τ0) = c−1

0 (nτ0)nτ0
i , with c0 being the phase velocity of the considered

wave at the source, with respect to γI . Compared to the isotropic case this
is a little more complicated by the fact that the phase velocity depends on
γI . Consequently, an extra term appears in PiJ = ∂pi/∂γJ . To find the
derivative we consider the equality c0 = nτ0 · vg which follows from (5.5).
Then,

PiJ(τ0) = c−1
0

∂n
τ0
i

∂γJ
− nτ0

i c
−2
0

∂
∂γJ

(nτ0
k v

g
k) =

= c−1
0

(
∂n

τ0
i

∂γJ
− pi(τ0)v

g
k(τ0)

∂n
τ0
k

∂γJ
− pi(τ0)n

τ0
k

∂vg
k

∂γJ

)
.

(5.27)

The last term in the above equation vanishes as the vector nτ is general-
ly (not only in anisotropic media) perpendicular to the vector ∂vg/∂γJ .
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Indeed, using the RTS equation dxi/dτ = vg
i (valid in anisotropy as well as

in isotropy), we can write

∂vg
k

∂γJ

=
∂

∂γJ

(
dxk

dτ

)
=

d

dτ

(
∂xk

∂γJ

)
, (5.28)

where the derivatives with respect to γJ are taken with constant τ . The
vector ∂xk/∂γJ is always tangent to wavefront and the same holds for its
change with τ (i.e., from one wavefront to the next one). Thus, for the initial
PiJ at a point source in general anisotropic media we have

PiJ(τ0) = c−1
0

(
∂nτ0

i

∂γJ

− pi(τ0)v
g
k(τ0)

∂nτ0
k

∂γJ

)
. (5.29)

In isotropic media, it is convenient to express the DRT system in the
RCC in which the simplest form of the system can be obtained. Let us
consider the 3×3 transformation matrix from the RC to the RCC

Q
(q)
ij =

∂qi
∂γj

, (5.30)

where the upper index (q) is used to emphasize the difference between this
matrix and the transformation matrix Q from the RC to the general Carte-
sian coordinates xi, introduced in Sec. 4.2. Let us assume, for the sake of
consistency with the previous derivations, that γ3 as well as q3 is chosen
equal to the flow parameter τ . Further let us consider the matrix only along
the central ray of the RCC. Then the matrix has the form:

Q(q) =


∂q1

∂γ1
≡ Q̄11

∂q1

∂γ2
≡ Q̄12 0

∂q2

∂γ1
≡ Q̄21

∂q2

∂γ2
≡ Q̄22 0

∂τ
∂γ1

∂τ
∂γ2

1

 . (5.31)

Note that the first two elements of the last column, ∂q1

∂τ
and ∂q2

∂τ
, vanish due

to the fact that qI = 0 on the central ray. The determinant of the matrix is

detQ(q) = det Q̄ , (5.32)
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where Q̄ is the 2×2 upper left submatrix of the matrix Q(q). The ray tube
cross-sectional area is, however, defined in terms of detQ, the determinant of
the transformation matrix from the RC to a general Cartesian coordinates.
Nevertheless, on the central ray this does not make a difference, since (due
to (4.9)) we can write

J (τ) = vJ = detQ = detH detQ(q) = det Q̄ , (5.33)

with v denoting either α or β, the P - or S-wave velocity, respectively, and H
is the transformation matrix from the RCC to general Cartesian coordinates
(see Sec. 4.1).

Thus, to obtain the ray Jacobian and the geometrical spreading, we must
know the elements of the 2×2 matrix Q̄. They are the solutions of the eight
DRT equations expressed in RCC coordinates. For a detailed derivation of
these equations let us refer to Červený (2001). In the matrix form this DRT
system reads

dQ̄

dτ
= v2P̄,

dP̄

dτ
= −v−1V̄Q̄ , (5.34)

where bars over the letters indicate the 2×2 matrices. All the matrices are
considered on the central ray. The matrix P̄ is defined by P̄IJ = ∂p

(q)
I /∂γJ

with p
(q)
I = ∂τ/∂qI . The quantities p

(q)
I represent the first two slowness

components, expressed in the RCC. It should be mentioned that although
∂τ/∂qI , the derivatives tangential to the wavefront (the surface of constant
τ) equal zero on the central ray, their derivatives with respect to γJ (i.e.,
P̄IJ), specified on the central ray, do not generally vanish. The same ar-
gumentation can be followed for Q̄IJ = ∂qI/∂γJ — in general it does not
vanish on the central ray, even though qI itself does. In the system (5.34),
V̄ is the matrix of the second derivatives of velocity v with respect to qI ’s:
V̄IJ = (∂2v(q1, q2, τ)/∂qI∂qJ)q1=q2=0.

The equations (5.34) represent the simplest possible form of the DRT
system. The system can be derived from the eikonal equation transformed
into the RCC (for details see Červený, 2001). It can be easily solved numeri-
cally at much lower cost than the RTS, provided the proper initial conditions
are specified. Let us present here, as an example, the initial conditions cor-
responding to a point source at the point τ0. They can be found in a way
analogous to that which we have used in the case of the DRT system (5.22),
expressed in the Cartesian coordinates. The point source initial conditions
are
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Q̄(τ0) = 0, P̄(τ0) = v−1(τ0)

 1 0

0 sinψ0

 , (5.35)

where ψ0 has the same meaning as in (5.24).
For general initial conditions, the system (5.34) can be solved with the

advantage of using the so-called propagator matrix, the matrix of fun-
damental solutions. The topics related to the propagator matrix and its
interesting properties are beyond the scope of these course notes as they are
not essential for the reader to understand the following text. Details can be
found in many textbooks on ray theory, like, for example, Červený (2001),
or Chapman (2004).

Let us mention here also the analytical solution of the system (5.34) for
a point source in a homogeneous isotropic medium:

Q̄(τ) = vlP̄(τ0), P̄(τ) = P̄(τ0 ), (5.36)

with P̄(τ0) given by (5.35) and l meaning the length of the straight ray from
the point τ0 to the point τ , similarly as in the equation (5.14).

In anisotropic models, we can consider the DRT system in the wavefront
orthonormal coordinates (WOC) analogous to the RCC in many respects.
The coordinates are briefly mentioned at the end of Sec. 4.1. Performing
the DRT in the WOC would also require us to solve eight linear ordinary
differential equations (for details see Červený, 2001). However, for general
anisotropy the DRT in the Cartesian coordinates is usually numerically more
efficient than that written in the WOC, despite the fact that it consists of
twelve equations.

5.4 Caustics

It has been mentioned in Sec. 4.2 that the RCC system is regular as long as
the Jacobian of the transformation from the RCC to the general Cartesian
coordinates does not vanish. We call a point at which the Jacobian is equal
to zero the caustic point. Since the Jacobian is equal to the area of the
cross-sectional surface element of the elementary ray tube, it is clear that
at the caustic point the rays forming the tube cross each other so that the
tube shrinks to zero. This may happen provided the medium is complex
enough for the ray field to develop multipathing of rays, e.g., due to an
inhomogeneous velocity. However, this may also happen in homogeneous
media in the presence of an concave reflector.
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The caustic points are not isolated in space, they form surfaces or lines
in 3D or 2D cases. An example of the formation of a caustic in a 2D model
is shown in figure 16.

Figure 16: Example of the formation of a 2D cuspoidal caustic due to a
low-velocity zone in the model. The caustic leads to folding in the ray
field which is associated with a triplication of the wavefront. Note the ray
envelopes CC1 and CC2 forming the caustic lines.

We have defined the caustic point by the condition detQ = 0. This
means that the rank of Q is less than 3. We distinguish two types of caustic
points, shown in the figure 17:

1. caustic of the first order (see Fig. 17, top), for which rankQ = 2, and

2. caustic of the second order (see Fig. 17, bottom), for which rankQ = 1.

Note that the caustic of the first order is associated with the flattening of
the elementary ray tube to a line segment, while at the caustic of the second
order the tube shrinks to a point.

Not only is the RCC not regular at caustics, but also the ray solution
as such breaks down at, and in the vicinity of, a caustic point. In Sec. 5.7
it is shown that the ray amplitude grows to infinity at a caustic and we
speak about the caustic singularity of the RM. Away from caustics the ray
solution is applicable (within the limits of the RM applicability, see Chap.
7), provided a proper phase shift due to the passage through a caustic is
adopted.

The phase shift due to caustic can be easily explained in the case of
an isotropic medium. After passing a caustic of the first order, J changes
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Figure 17: Caustics of the first and second order. Ray A0A corresponds
to ray parameters γ1, γ2, ray B0B corresponds to γ1 + dγ1, γ2, ray C0C
corresponds to γ1+dγ1, γ2+dγ2, and ray D0D corresponds to ray parameters
γ1, γ2 + dγ2 (after Červený, 2001).

sign, which is associated with the change of the mutual orientation of the
vectors ∂x

∂γI
, tangent to the surface of constant s. This introduces a factor√

−1 into the geometrical spreading and therefore the phase shift of π/2. In
this respect, the caustic of the second order can be viewed as two first-order
caustics in one, so that an additional phase shift of π/2 is necessary. To
summarize, after passing through a caustic, the argument of the geometrical
spreading

√
J takes the shift ∆Kπ/2, where ∆K equals 1 or 2 for the caustic

of the first or second order, respectively.

In anisotropic media, the situation is more complicated. The quantity
∆K may also be negative, ∆K = −1 or ∆K = −2. This is related to the
fact that in anisotropic media the local slowness surface need not be convex
(see example in Fig. 8). For a discussion of this problem see Červený, 2001.
A detailed derivation can be found in the paper by Bakker, 1998.

Note that the phase shift due to caustics is cumulative: as many times
as the ray crosses or touches a caustic, that many times the proper phase
shift must be added. More specifically, along a ray from a point S to a
point R, the amplitude gains the term exp[−i1

2
πK(S,R)], where K(S,R) =∑i=N

i=1 ∆Ki with N being the number of caustic points along the ray between
the points S and R. The exponent K is sometimes called the “index of the
ray trajectory”. It is known also as the “KMAH index” (see Červený, 2001).
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5.5 Calculation of ray amplitudes. Transport equation

Let us recall what we have derived up to now. We have assumed that the
solution we seek is of the form (2.20)

u(x, t) = U(x)F (t− τ(x)).

We know how to calculate τ , the solution of the eikonal equation, along
rays. Besides computing the eikonal, the eikonal equation allows us to de-
termine also the eigenvectors of the Christoffel matrix, g(m),m = 1, 2, 3. In
anisotropic structures, these three vectors can be specified uniquely while,
in isotropic media, this is possible only for one of them, that corresponding
to the P -wave (g(3), see Sec. 3.1). This eigenvector is the unit vector normal
to wavefront, i.e., it is parallel to nτ (and also to the slowness vector p, the
group velocity vector vg, and the unit vector tangent to ray t). The remain-
ing two are mutually orthogonal unit vectors g(1),g(2), situated in the plane
tangent to wavefront, making together with g(3) a right-handed triplet, but
their orientation within the plane may be arbitrary. To our advantage we
can make them identical with the RCC basis vectors e1, e2 introduced in
the section 4.1. Their orientation, being specified arbitrarily at one (initial)
point of the ray, is determined uniquely along the whole ray solving (4.4).

As it has been explained in Sec 3.1, the Christoffel matrix eigenvectors
represent also the ray amplitude polarization vectors. In anisotropic models,
in which all three waves of the zero-order solution are linearly polarized
in the direction of the corresponding eigenvectors, we can express the ray
amplitude in the form of (3.15), i.e.

U(m)(x) = A(m)(x)g(m)(x) .

In isotropic models we have such a simple expression only for the P -wave
(equation (3.26))

U(P )(x) = A(x)g(3)(x) ,

while for the S-wave we have to use the form (3.27)

U(S)(x) = B(x)g(1)(x) + C(x)g(2)(x) ,

where B and C are coordinates of the S-wave amplitude vector with respect
to the basis vectors g(1),g(2). Note that the polarization of S-waves is, in
general, elliptical. In can be linear only in certain special cases.
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Since the polarization the amplitude we want to evaluate is implicitly
given by the corresponding eigenvectors, the only quantities to be determined
are the scalar amplitude factors A(m) (in anisotropic media) and A for the
P -, and B and C for the S-wave (in isotropic media). For this we need to
solve the so-called transport equation (TE), briefly mentioned in Sec. 2.5,
governing the transport of the scalar ray amplitude along the ray. Note that
the scalar ray amplitudes may be complex-valued.

The TE can be derived by inserting the zero-order ray solution into the
EDE (see Sec. 2.5) and equating to zero the coefficient M of the first power
of ω, or the first derivative of F , when working in the frequency or the time
domain, respectively. Note that, in the equation, the coefficient N of the
second power of ω (the second derivative of F ) vanishes because τ satisfies
the eikonal equation. Thus, in anisotropic media, we come to the condition:

Mi = cijklτ,jUk,l + (cijklτ,lUk),j = 0 , for i = 1, 2, 3 . (5.37)

Knowing τ (corresponding to the selected wave type m), one could consider
this equation, after substituting (3.15) for U, as the equation for the scalar
amplitude of the zero-order solution. The problem is that, in general, the
condition M = 0 cannot be satisfied exactly (the vector M cannot be made
zero taking into account only the leading term amplitude). In other words,
it is not possible to find A(m) that makes the vector vanish. It should not
be surprising since we know that our zero-order solution is only an approx-
imation and cannot completely satisfy the equation of motion (otherwise it
would be the exact solution). To explain this in greater depth it is useful to
recall for the moment the concept of the ray series. Let us imagine that in-
stead of the leading term we would insert the whole ray series into the EDE.
Following the same procedure as that adopted in Sec. 2.5, i.e. gathering
the terms of the same power of ω (or derivative of F ), and keeping only the
most singular terms up to ω0 (F ), we would obtain the equation analogous
to (2.33) (or (2.26)) with N̄, M̄, L̄ instead of N,M,L. Obviously, N̄ = N,
since only the leading term can contribute to the highest power of ω (or the
highest derivative of F ). This is not the case of M̄: it differs from M due to
a contribution from the first higher-order term, the term with the amplitude
U1 (note that any other higher-order term does not contribute to M̄). To
make it more clear, let us decompose M̄ as

M̄(∇τ,U,U1) = M(∇τ,U) + ∆M(∇τ,U1) . (5.38)

For the sake of simplicity, ∇τ can be skipped from the list of variables in
(5.38) as it is of no concern in the argument that follows. Since the first
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higher-order term in the ray series contributes to M̄ in the same way as the
leading term contributes to N, the difference ∆M is clearly

∆M(U1) = N(U1) = (Γ − I)U1 , (5.39)

where Γ is the Christoffel matrix introduced in Sec. 3.1, and I denotes the
3 × 3 identity matrix.

Solving asymptotically the equation of motion, we require

M̄(U,U1) = 0 . (5.40)

However, the difference ∆M does not vanish (so that neither M(U) which
equals to −∆M(U1)) eventhough τ satisfies the eikonal equation. ∆M = N
would be zero only provided U would stand in it instead of U1, since U is
parallel to the relevant eigenvector (corresponding to the selected type of
wave) of the matrix Γ. Nevertheless, we can utilize to our advantage the
fact that ∆M is perpendicular to the eigenvector. Multiplying M̄ with g(m),
we are left with the scalar condition

M̄(U,U1) · g(m) = M(U) · g(m) = 0 , (5.41)

solvable for the corresponding A(m) or A,B,C. Thus, taking the inner prod-
uct of M with the relevant polarization vector and equating this product to
zero leads to the transport equation for our zero-order solution. Note that
the direction of the polarization vector is also called the principal direction
(see Chapman, 2004) and the above linked procedure yields the so-called
principal amplitude component.

Let us derive the TE in anisotropic media. For any of the three waves
propagating there (the index m = 1, 2, 3 is omitted in the following deriva-
tion) we start with the equation Mi(Ag)gi = 0. After simple algebra, sub-
stituting (2.28) for Mi, utilizing the symmetry cijkl = cklij and writing p for
∇τ we get

Mi(Ag)gi = 2cijklpjgigkA,l + A(cijklplgkgi),j = 0 . (5.42)

This equation can be simplified even further by writing vg
i for 1

ρ
cijklplgjgk,

see (3.82)

2ρvg
iA,i + A(ρvg

i ),i = 0, i.e. 2ρvg · ∇A+ A∇ · (ρvg) = 0 . (5.43)
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The first term in the above equations represents a directional derivative of
A in the direction of vg. From Sec. 3.7 we know that vg has the meaning
of a group velocity and so (5.43) is an ordinary differential equation for
A along a ray, the curve everywhere tangent to vg. The equation governs
the evolution of the scalar ray amplitude along a ray and it is called the
transport equation. An alternative and compact form of the above equation
can be obtained by multiplying it by the complex conjugate quantity A∗ and
summing it with the TE written for A∗ and multiplied by A. This gives rise
to a conservation equation

(ρAA∗vg
i ),i = 0, i.e. ∇ · (ρAA∗vg) = 0 . (5.44)

The vector in parentheses is the energy flux, so that the above equation
represents conservation of energy along rays.

In isotropic structures, the procedure for deriving the TE is analogous,
but we have to substitute (2.31) for Mi. First, let us show this for P -waves.
Writing α for the P -wave phase velocity we can express the polarization
vector g = g(3) = αp. Imposing the condition of orthogonality (5.41) we
arrive at

Mi(Ag)gi = (λ+ 2µ)(2A,ipi + 2α−1α,ipi + 2Aα2pj,ipjpi + Apj,j)

+(λ+ 2µ),ipiA = 0 .

(5.45)

Recognizing that pj,ipjpi = 1
2
(pjpj),i pi = 1

2
(α−2),i pi = − 1

α3α,ipi and sub-
stituting ρα2 for λ + 2µ we obtain the transport equation for P -waves in
isotropic media

ρα2(2A,ipi + Apj,j) + (ρα2),i piA = 0 . (5.46)

Similarly to the anisotropic case it can also be written in the alternative,
compact form

(ρAA∗α2pi),i = 0 i.e. ∇ · (ρAA∗α2p) = 0 . (5.47)

The physical meaning of this equation is the same as in the case of anisotropic
media – conservation of energy. Indeed, in isotropic media the magnitude
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of the P -wave group velocity vector is α and it is pointing in the direction
normal to wavefront, i.e. vg = α2p, so that the equations (5.47) and (5.44)
are in fact identical.

For S-waves the situation is a bit more complicated due to the fact that
we have to deal with two polarization vectors, g(1),g(2). We multiply Mi in
(5.41) by these two vectors in turn. When multiplying by g(1) we get the
condition

Mi(U)g
(1)
i = (λ+ µ)(Uj,ipjg

(1)
i + Ujpi,jg

(1)
i )

+µ(2Ui,jpjg
(1)
i + Uig

(1)
i pj,j) + λ,ig

(1)
i Ujpj

µ′jUig
(1)
i pj = 0 ,

(5.48)

in which U(S) = Bg(1) + Cg(2) is to be substituted for U. After simple
derivation we obtain

Mi(Bg(1) + Cg(2))g
(1)
i = µ(2pjg

(1)
i g

(2)
i,j C +Bpj,j) + µ,jBpj + 2µB,jpj = 0 .

(5.49)

When deriving this equation we have utilized that g(1) is the unit vector
(i.e., g

(1)
i g

(1)
i = 1) orthogonal to p (i.e., pig

(1)
i = 0) which yields also identi-

ties g
(1)
i,j g

(1)
i = 0 and pi,jg

(1)
i = −pig

(1)
i,j . In the same way, when multiplying

Mi with g(2), we obtain the analogous equation to the above one with in-
terchanged roles of g(1) and g(2) and of B and C. Thus we are left with the
system of two (mutually coupled) S-wave transport equations

µ(2pjg
(1)
i g

(2)
i,j C +Bpj,j) + µ,jBpj + 2µB,jpj = 0

µ(2pjg
(2)
i g

(1)
i,j B + Cpj,j) + µ,jCpj + 2µC,jpj = 0 .

(5.50)

Up to now we have not specified the position of the two eigenvectors g(I)

in the plane perpendicular to ray. We can choose their position arbitrarily,
keeping their mutual orthogonality. Let us make them coinciding with the
vectors eI , the RCC basis vectors introduced in Sec. 4.1. Then the vectors
are transported parallel along rays. For the change of g(I) along the ray we
have:
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dg
(I)
i

ds
= g

(I)
i,j

dxj

ds
= g

(I)
i,j βpj . (5.51)

Note that the last equality is a consequence of the RTS. From the condition
of the parallel transport (4.1) we know that dg

(I)
i /ds = aIpi. Thus, we can

write

β−1aIpi = ±β−2g
(3)
i = g

(I)
i,j pj . (5.52)

Multiplying in turn this equation for I = 1 with g
(2)
i and for I = 2 with

g
(1)
i , and taking into account the orthogonality of the eigenvectors of the

Christoffel matrix, yields:

g
(1)
i,j pjg

(2)
i = 0, g

(2)
i,j pjg

(1)
i = 0 . (5.53)

Under this condition, however, the transport equations (5.50) simplify and
decouple into

µBpj,j + µ,jBpj + 2µB,jpj = 0

µCpj,j + µ,jCpj + 2µC,jpj = 0 .
(5.54)

Substituting β2ρ for µ and applying the same procedure with complex con-
jugate scalar amplitude factors as in the case of the P -wave (and also the
waves in anisotropic media) we finally arrive at the system of two compact
decoupled transport equations for B and C

(ρBB∗β2pi),i = 0 , (ρCC∗β2pi),i = 0 . (5.55)

We see that, provided the polarization vectors coincide with the RCC basis
vecors, we have obtained exactly the same equations both for B and for C,
i.e., B and C change along the ray in exactly the same way. This means that
the direction of the S-wave amplitude vector remains fixed with respect to
the RCC basis along the whole ray. All the TE’s (5.44), (5.47) and (5.55)
are of the same form, so that the procedure to solve all these equations is
the same.
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5.6 Solution of the transport equation. Continuation formula

In the previous section, we have derived transport equations both for
anisotropic as well as isotropic media for all types of waves propagating in
these structures. We have found that the equation governing the transport
of the scalar ray amplitude along rays has in all cases the form

(ρAA∗vg
i ),i = 0 , (5.56)

where A is the scalar ray amplitude factor to be found, ρ is density and vg
i

denotes the i-th component of the relevant group velocity vector. In general
anisotropic structures it is given by the expression (3.82), in isotropic models
it can be replaced by v2pi, with v being either α for the P -wave, or β for
the S-wave.

Regardless of the complexity of the model we can always find the analytic
solution to the above TE along rays. Let us apply a volume integral over a
volume V to the TE and convert it to the surface integral over the volume
boundary S by the use of the well known Gauss theorem∫∫

V

∫
(ρAA∗vg

i ),idV =

∫
S

∫
ρAA∗vg

i n
S
i dS = 0 . (5.57)

In the above formula, nS
i is the i-th component of the outer unit normal to

the surface S.

The volume V in (5.57) is an arbitrary volume illuminated by the ray
field of a given wave type. Especially, let it be the segment of the elementary
ray tube, formed by rays described by the flow parameter τ , bounded by two
wavefronts (at times τ0 and τ , see Fig. 13). Then the surface integral in
(5.57) simplifies because the contributions from the side walls of the tube
vanish. Indeed, since the energy flows along rays, i.e. the group velocity
is everywhere tangential to rays, and the outer normal is perpendicular to
rays on the side walls, the inner product vg

i n
S
i vanishes there. We have the

only non-vanishing contributions to the surface integral from the wavefront
surface segments. On these segments we can determine vg

i n
S
i as

vg
i (τ0)n

S
i (τ0) = −vg

i (τ0)n
τ
i (τ0) = −c(τ0)

vg
i (τ)n

S
i (τ) = vg

i (τ)n
τ
i (τ) = c(τ) ,

(5.58)

where c means the phase velocity and nτ denotes the normal to the wave-
front. The minus sign in the first of the two equation is due to the opposite
orientation of the outer normal to the ray tube and normal to the wavefront
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at the point τ0 on the ray along which we wish to solve the TE. The surface
integral in (5.57) is then∫∫

dS(τ)(τ)

ρ(τ)A(τ)A∗(τ)c(τ)dS −
∫∫

dS(τ)(τ0)

ρ(τ0)A(τ0)A
∗(τ0)c(τ0)dS = 0 , (5.59)

where dS(τ) is the scalar surface element cut from wavefront by the elemen-
tary ray tube. It is defined as dS(τ) = dS(τ) ·nτ , where dS(τ) is the vectorial
surface element given by (5.1). Combining (5.8) and (5.4) we see that

dS(τ) = c−1J (τ)dγ1dγ2 . (5.60)

This makes it possible to put the two integrals in (5.59) into one and write∫∫
γ1 γ2

[ρ(τ)A(τ)A∗(τ)J (τ)(τ)− ρ(τ0)A(τ0)A
∗(τ0)J

(τ)(τ0)]dγ1dγ2 = 0 . (5.61)

The above equation holds universally, it must not depend on any specific
choice of the ray parameters γI . Thus the conclusion is that the expression
in square brackets itself must vanish, i.e.

ρ(τ)A(τ)A∗(τ)J (τ)(τ) = ρ(τ0)A(τ0)A
∗(τ0)J

(τ)(τ0) . (5.62)

Since, in the standard ray theory, the quantities ρ and J (τ) in the above
equation are always real, we can write

A(τ) = A(τ0)

√
ρ(τ0)J (τ)(τ0)

ρ(τ)J (τ)(τ)
. (5.63)

The equation relates the scalar amplitude factor at a given point on the ray,
say the point R (e.g., receiver), determined by τ , to the scalar amplitude
factor at a reference (initial) point on the same ray, say S, determined by
τ0. Applying (5.9), this equation can be rewritten as

A(R) = A(S)

√
ρ(S)vg(S)J(S)

ρ(R)vg(R)J(R)
, (5.64)

the most common form of the continuation formula in anisotropic mo-
dels. The amplitude at R is inversely proportional to the quantity

√
J(R),

introduced in Sec. 4.2 as the geometrical spreading. To evaluate the ampli-
tude at R we must moreover know the geometrical spreading at the reference
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point S and the group velocity magnitude at the two points, calculated using
(3.82), which requires to know also the slowness and the relevant eigenvec-
tor. These quantities are known from the RTS. Density is assumed to be
known everywhere as it is the parameter of the model.

In isotropic media, we can rewrite the continuation formula by the use
of vg = α (for P -waves) or vg = β (for S-waves). For a P -wave the formula
reads

A(R) = A(S)

√
ρ(S)α(S)J(S)

ρ(R)α(R)J(R)
. (5.65)

The only quantity to be calculated in order to evaluate the amplitude factor
from the continuation formula in isotropic media is the geometrical spread-
ing. In the case of an S-wave we must replace β for α and use the con-
tinuation formula for B (and C) amplitude factors (standing in the formula
instead of A). In this way we obtain the amplitude vectors (4.6), expressed in
the RCC. For practical use it is convenient to transform the RCC amplitude
to the general Cartesian coordinates by multiplying with the transformation
matrix H, introduced in Sec. 4.1 (see Sec. 5.10).

5.7 Notes on the continuation formula

Let us have a ray connecting points S and R. According to the continuation
formula we are able to calculate the scalar ray amplitude from S to R along
this ray. Despite the fact that in the formula there are quantities specified
only at the two points S and R, knowledge of the ray connecting them is
essential to evaluate the geometrical spreading and, in anisotropic models,
also the group velocity. If there would be no ray from S to R, for example
when a shadow zone is present there, we have no chance to compute the ray
amplitude at R by the use of the standard zero order ray method. This is,
however, not an additional restriction of the method since the standard RM
travel time is also known only along rays.

The continuation formula represents a very simple tool to compute the
amplitudes, applicable in generally inhomogeneous complex models. There
are, however, several specific situations in which a special operation has to
be involved to evaluate the amplitude correctly. In certain situations the
solution even breaks down and the formula cannot be used notwithstanding
that the ray connecting the points R and S exists. All the above-mentioned
situations relate to the cases of shrinking the elementary ray tube to zero
cross-sectional area and, consequently, intersecting rays and vanishing the
geometrical spreading.
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Figure 18: The sketch of three situations in which the continuation formula
possibly meets problems. In all these cases the intersecting rays belong to
the same elementary ray tube.

Let us first consider that there is a caustic point on the raypath between
the points S and R, Fig. 18 (a). At the caustic point, the ray Jacobian
J vanishes. After passing through the caustics, J becomes finite again,
but usually changes sign (in the case of the first-order caustic). In order
to continue with the solution after passing through the caustic, the proper
phase shift has to be taken into account to choose the right root of

√
J . The

phase shift is controlled by the index of the ray trajectory K (the KMAH
index), see Sec. 5.4. In isotropic media, the index K increases by ∆K=1
upon the first-order caustic, and by ∆K=2 in the case of the second-order
caustic. In anisotropic models the behavior of ∆K may be more complicated,
as it is explained, e.g., by Bakker (1998) or Červený (2001). As many times
as the ray passes through a caustic between S and R, that many times the
proper ∆K must be added to the index K. In the presence of caustics
between the points S and R it is necessary to rewrite J(R) as J(R) =
|J(R)| exp(iπK(S,R)) and its square root in the continuation formula as√

J(R) =
√
|J(R)| exp(

1

2
πK(S,R)) . (5.66)

It is therefore useful to generalize the continuation formula writing the ex-
pression valid both in the presence as well as the absence of caustic points
on the raypath connecting the points S and R. In anisotropic media we have

A(R) = A(S)

√
ρ(S)vg(S)|J(S)|
ρ(R)vg(R)|J(R)|

exp(i
1

2
πK(S,R)) , (5.67)

where we have again used, for simplicity, the notation vg for |vg|. The
P -wave amplitude satisfies

A(R) = A(S)

√
ρ(S)α(S)|J(S)|
ρ(R)α(R)|J(R)|

exp(i
1

2
πK(S,R)) , (5.68)
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and the S-wave amplitude satisfies the analogous equations for B and C
with β replacing α. When there are no caustic points in between S and R,
the index of the ray trajectory K obviously equals zero, i.e., no additional
phase shift is taken into account.

Second, let us imagine that the point R itself is a caustic point, see Fig.
18b. Then |J(R)| = 0 and the scalar amplitude at R is infinite. The caustic
represents a singularity of the ray theory. At such a point and in its
vicinity, the ray theory is locally invalid and the ray solution is in conflict
with its ansatz (assuming slowly varying finite amplitude). We speak about
the caustic region in which the ray method cannot be used.

Third, let us consider that the rays are intersecting at the point S. The
very common such situation is when the rays are emanated from the point
S — the point source. Then |J(S)| = 0, and provided finite A(S), the con-
tinuation formula would yield zero amplitude everywhere along the ray. To
obtain a non-trivial solution we have to generalize the continuation formula
considering a finite limit when a point S ′ approaches S on the given ray (see
Fig. 18 (c))

lim
S′→S

[A(S ′)
√
|J(S ′)|] = G̃(S) , (5.69)

which we substitute for A(S)
√
|J(S)| into the continuation formula. This

limit depends on the raypath along which the point S ′ approaches S. To
emphasize this fact we add the ray parameters γI , specifying the given ray,
to the parameters of the function G̃. The function G̃(S, γ1, γ2) is then, in
general, directionally dependent and describes the directional radiation of
the point source.

In the case of a point source at S it is convenient to modify the con-
tinuation formula by useful normalizing of the geometrical spreading. More
specifically, let us introduce the so-called relative geometrical spread-
ing, S(R,S) =

√
|J(R)|/ det P̄(S) =

√
| det Q̄(R)|/ det |P̄(S)|, where the

matrices Q̄ and P̄ are the solutions of the DRT in the RCC (or WOC, in the
case of anisotropic medium) for a point source initial conditions. Note that
away from the point source S, there is no effect of the above modification,
since the multiplicators (| det P̄(S)|)−1 in numerator and denominator can-
cel each other. An important property of the relative geometrical spreading
is its reciprocity, i.e. equal value when reversing the propagation direction:
S(R,S) = S(S,R) which is not a general property of

√
J itself. For details

the reader is referred to the paper by Kendall et al., 1992. See also Chap-
man (2004), or Červený (2001). It can be also shown, using the concept
of the propagator matrix (briefly mentioned in Sec. 5.3), that the relative
geometrical spreading does not depend on the parameterization of the ray
field, i.e. on a specific choice of the ray parameters γ1, γ2. Consequently, the
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modification allows us to consider, instead of G̃, the finite limit G

lim
S′→S

[A(S ′)S(S ′, S)] = G(S, γ1, γ2) , (5.70)

invariant with respect to parameterization of the ray field. Thus, this limit,
being still directionally dependent, characterizes better the directional radi-
ation of the point source itself, without being contaminated by directionally
dependent residual factors due to the ray field parameterization (compare,
for example, dependence on ψ0 in the expression (5.35) for a point-source
initial P̄(S)). The function G(S, γ1, γ2) is called the radiation function.
Note that the parameters γI in the argument of the function G indicate only
its directional dependence, but not a dependence on a specific choice of γI

and we skip them in the following equations.
The generalized continuation formula for anisotropic media then reads

A(R) =

√
ρ(S)vg(S)

ρ(R)vg(R)
S(R,S)−1 exp(i

1

2
πK(S,R))G(S) . (5.71)

In isotropic media, e.g., for P waves, we can write

A(R) =

√
ρ(S)α(S)

ρ(R)α(R)
S(R,S)−1 exp(i

1

2
πK(S,R))G(S) . (5.72)

The modification for S waves is straightforward.
From the generalized continuation formula it is clear that the radiation

function can be interpreted as a spreading-free amplitude (i.e., the am-
plitude not divided by the relative spreading) at the source: if R = S,
A(S) = S(S, S)−1G(S). Note that the G’s in the equations (5.71) and (5.72),
corresponding to the isotropic and anisotropic case, differ from each other
even for the same type of the point source.

The physical meaning of the radiation function G can be seen in a more
explicit way in a homogeneous isotropic model. From Sec. 3.3 we know that
the rays are straight lines in such a case. The ray Jacobian J can be ex-
pressed analytically. For example, for take-off angles as the ray parameters it
is given by the equation (5.14) as J = l2 sinψ0, with l being the length of the
ray (the distance between the points R and S), and ψ0 being the declination
of the ray (see Sec. 3.3). From equation (5.35) it follows that the determi-
nant of the matrix P̄ at the source point S is det P̄(S) = v(S)−2 sinψ0. Thus,
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from equation (5.72) we can see that for a point source S in a homogeneous
isotropic medium the amplitude is, as expected, proportional to 1/l. The
physical meaning of the radiation function is then clear: in a homogeneous
isotropic medium it can be viewed as the directionally dependent scalar ray
amplitude on the sphere with its center at S and with the radius l = 1/v.

5.8 Radiation function and radiation pattern

The source types of seismological interest are namely a single force (impor-
tant for Green’s function computation), a force couple and a linear com-
bination of the force couples, known as the moment tensor point source.
Especially, combining three couples without a torque moment, acting along
three mutually perpendicular axes, we can simulate the omnidirectional ex-
plosive source in isotropic media. However, the radiation function corre-
sponding to such an omnidirectional source need not be calculated in this
way as it is very simple: it represents a multiplicative constant, the same
in all directions. Another special case of the moment tensor point source,
extremely important in earthquake seismology, is the well known double
couple. From the theoretical point of view, the most important is the single
force point source. Knowing the corresponding radiation function allows us
to calculate the Green’s function (defined as a displacement due to a single
force). Realizing that displacement due to a force couple is only a spatial
derivative of the Green’s function, we see that radiation functions for other
above-mentioned source types can be easily derived from the basic radiation
function for the single force. This source type we also choose here as an
example for further explanation.

The point source radiation functions, introduced in the previous section,
can be found by matching the general expressions (5.71) or (5.72) with ana-
lytical solution available for a homogeneous medium. The idea behind this
is that the expressions (5.71) and (5.72), valid for a general inhomogeneous
media, must also be adequate for the special case of a homogeneous medium,
for which the analytical solution is known. For example, for a single force
in an isotropic medium, the well known Stoke’s solution (see, e.g, Aki and
Richards, 1980) can be used to determine the radiation function. For the
sake of writing it in a compact form, let us denote by G(q) the radiation vec-
tor, composed of 3 RCC radiation functions corresponding to 3 RCC basis
(polarization) vectors. Assume a single force acting at the point S

f(x) = δ(x− x(S))f0 , (5.73)

expressed in general Cartesian coordinates. Then, the RCC radiation vector
due to this force is given by the formula
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G(q)(S) =
1

4πρ(S)v(S)
HT (S)f0(S) , (5.74)

in which the Cartesian vector f0 must be multiplied by the inverse trans-
formation matrix H, H−1 = HT (see Sec. 4.1). The first two components
of the above radiation vector yield the S-wave radiation function (for which
we specify β for v), while the third one yields the P -wave radiation function
(with α inserted for v).

For the vertical point force (pointing along the axis x3), the radiation
function (5.74) is shown in the figure 19. In the left part of the figure, the
P -wave radiation function is displayed in a 3D view. The right part provides
the same, but for an S-wave. If we choose the RCC basis vector e2 being
horizontal, the S-wave radiation function in Fig. 19 (right) corresponds to
the S1 component (scalar factor B), since the vertical force does not generate
any S-wave displacement polarized in horizontal plane. Fig. 20 (left), shows
a 2D vertical section of the radiation functions from Fig. 19.

Figure 19: Radiation functions of P - (a) and S waves (b) due to a vertical
point force in an isotropic medium.

To find the radiation function due to a single force in an anisotropic
medium, we proceed in analogy to the isotropic case. For matching with
the general solution we can use the solution for a homogeneous anisotropic
medium presented by Pšenč́ık and Teles (1996) or Červený (2001). The ana-
lytic solution depends on the Gaussian curvature K of the slowness surface in
the direction specified by the slowness vector of the considered wave. This
quantity can be expressed as a product of the principal curvatures k1, k2

along the p1- and p2- axes: K = k1k2. The principle curvatures can be
used to define the so-called index of the source, σ0 = 1 + 1

2
sgnk1 + 1

2
sgnk1.

Thus, σ0 = 0 for kI < 0 which indicates that the slowness surface is con-
vex for a given direction of the slowness vector, σ0 = 2 for kI > 0 which
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Figure 20: Left: 2D vertical section of the P - and S-wave radiation pattern
due to the vertical point force in an isotropic medium. Right: the same,
but for the qP - and qS-wave in a vertically transversally isotropic medium
(from Pšenč́ık, 1994).

corresponds to a concave surface, and, finally, σ0 = 1 for k1 and k2 having
opposite signs, which corresponds to a saddle-shaped slowness surface. For
example, in Fig. 8, the slowness surfaces of the qP - and qS1-waves would be
assigned by σ0 = 0, while that one of the qS2- would be assigned by σ0 = 1 in
certain slowness directions (note that the slowness surfaces in transversally
isotropic media, corresponding to Fig. 8, left, are rotationally symmetrical
with respect to the p3-axis, the axis of the symmetry of the medium). For
completeness let us add that in isotropic media, σ0 = 0 in all directions both
for P - as well as S-waves.

The radiation function due to a single force (5.73) for any of the three
waves propagating in an anisotropic medium reads

G(S) =
gk(S)f0k(S)

4πρ(S)c(S)
exp[

1

2
πσ0(S)] , (5.75)

where gk is the polarization vector of the considered wave and c its phase
velocity. The analogy with (5.74) is obvious, but the quantities gk(S) and
c(S) in the equation (5.75) are directionally dependent. An example of
such radiation functions due to a vertical force in a transversally symmetric
medium with vertical axis of symmetry is shown in Fig. 20, right. The
figure provides the radiation functions of the qP - and qS2-wave; the faster
qS1-wave, polarized horizontally in the given example, is not generated by
the vertical force.
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In connection with directional radiation from a point source, another im-
portant term, the so-called radiation pattern, frequently appears in seis-
mological literature. Many authors (for example, Aki and Richards, 1980)
define the radiation pattern as the amplitude on a unit sphere in a locally
homogeneous medium, with its center at the source point.

R(S) = (G(S)/S(R,S))l(R,S)=1 , (5.76)

where l(R,S) means the distance between R and S. This amplitude is, in
general, directionally dependent. Let us explain the difference between the
radiation function, we have defined in the previous section, and the radiation
pattern.

In homogeneous isotropic media, the radiation function has the meaning
of the ray amplitude on a sphere around the source, the radius of which is
1/v. Thanks to the fact that the geometrical spreading in such a medium
does not depend on direction, i.e. it is the same for all points situated on a
given sphere with its center at S, the difference between R(S) and G(S) is
only formal, given by proper scaling with v: R(S) = G(S)/v(S). In the case
of isotropy, v(S) is a directionally independent constant. Thus, for example,
Fig. 19 and Fig. 20 (left) could represent both R(S) as well as a normalized
G(S) corresponding to the unit vertical force in a homogeneous isotropic
medium. Note that the normalizing factor for P - and S-waves would be
different.

In homogeneous anisotropic media, the radiation pattern R(S), given as
(5.76), may differ considerably from G(S) due to possibly strong directional
dependence of the relative geometrical spreading S(R, S). For an illustration
see figure 21. In the left part, the figure provides an example of the so-called
ray spreading diagram of qP -wave in a transversally isotropic medium. The
diagram displays the relative geometrical spreading together with rays shot
with equally spaced initial angles of the wavefront normals (slowness vec-
tors). The rays terminate on the unit sphere around the source. The length
of the rays in the diagram is a measure of the relative geometrical spreading
in a given direction of initial slowness. Note that in the case of anisotropy,
the ray direction does not coincide, in general, with the initial slowness di-
rection. The angular spacing between rays is inversely proportional to the
geometrical spreading. Fig. 21, right, shows the corresponding qP -wave
radiation pattern. Let us notice a considerable difference in shape between
R(S) and G(S) (compare Fig. 21, right, with the solid line in Fig. 20, right).

Let us end this section noting some practical aspects of the calculation
of the ray synthetic wavefield due to a point source. In isotropic media, the
traditional approach, commonly used by many authors, is to consider the
standard radiation pattern as an “initial amplitude” at the source. This
means that, in fact, we consider a homogeneous medium in the vicinity of
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Figure 21: Left: 2D vertical section of the qP ray spreading diagram. Right:
2D vertical section of qP radiation pattern due to the vertical point force
in a transversally isotropic medium with vertical axis of symmetry (from
Pšenč́ık, 1994).

the source instead of the real inhomogeneous structure. It is assumed that
replacing a small portion of the model in a small vicinity of the source-point
by a homogeneous medium does not make a considerable difference for the
final amplitude at a larger distance from the source. In ray theory, the mini-
mum source-receiver distance is restricted by the validity conditions, see the
chapter 7. This restriction also ensures the wavefield to be calculated away
a near-source region in which the near-field terms, not computed in the RM,
are negligible. Moreover, the RM validity conditions dictate that the struc-
ture must be varying only slowly with position. Under these circumstances,
the substitution of the real medium in a small vicinity of the source by a
homogeneous material may be acceptable. Nevertheless, there are models,
treatable by the RM, in which the inhomogeneous character of the medium
in the vicinity of the point source is more pronounced, and considering the
standard radiation pattern would yield distorted results. For example, when
the source occurs in the region of a velocity gradient, the amplitudes on a
unit sphere around the source may depart significantly from those yielded
by the standard radiation pattern. Another well known structural effect,
resulting in amplitude directional behavior considerably different from the
standard radiation pattern, is the presence of a structural interface (or the
Earth’s surface) in a close vicinity of the source (see J́ılek and Červený,
1996). The effects due to local inhomogeneities in the source region would
be frequency-dependent. For high frequencies the amplitude directional be-
havior could be similar to that in a locally uniform medium. With decreasing
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frequency the amplitude may depart significantly from that computed by the
use of the locally uniform medium approximation.

In anisotropic media, the standard radiation patterns, defined by (5.76),
are not so widely used as in the case of isotropy. The reason is that, in
the case of anisotropy, the radiation pattern itself does not describe well the
directional radiation from the point source. Moreover, the approximation
consisting in replacing the real medium by a homogeneous material inside the
unit sphere around the source is neither well justified, nor computationally
efficient. Many authors present the modified radiation patterns representing
the amplitude over a unit sphere in real inhomogeneous media (see Pšenč́ık
and Teles, 1996, Ben-Menahem et al., 1991, and others).

5.9 Ray amplitudes across a structural interface

Let us consider a slightly curved interface Σ. In Sec. 3.8, it has been
shown how to transform the slowness vector across such an interface. In
this section we explain how to transform the scalar amplitude factor and
the ray Jacobian. Note that the amplitude polarization vectors of the waves
generated at the interface, g, are assumed to be known. In anisotropic
models or for P -waves in isotropic structures they are determined uniquely
as the corresponding Christoffel matrix eigenvectors at a given point. For
S-waves the polarization vectors can be, with advantage, identified as the
RCC basis vectors tangent to wavefront. At the interface they can be, in
principle, specified arbitrarily. However, they must be specified before the
amplitude is transformed across the interface as the amplitude is expressed
with respect to them.

For simplicity, let us assume that the interface separates two solid half-
spaces in welded contact. According to the boundary conditions (BC), the
displacement and traction must be equal on both sides of the interface. In
Sec. 3.8 we have shown, that to satisfy these conditions universally (at any
time and any point of the interface), not only the forms of the analytical sig-
nals describing the time dependence of our solution, but also their arguments
must be the same for all the waves involved in the reflection/transmission
(R/T) problem. Thus, dividing the BC equations by the analytical signals,
we arrive at a system of algebraic equations for the scalar amplitude factors
of the generated waves.

Let us start with the case of an anisotropic medium. As we know, three
types of waves can, in general, propagate in such a model. Thus, on both
sides of the interface an incident wave can generate three waves; altogether
six generated waves can possibly propagate away from the interface. Let us
distinguish them by the upper indices R and T, for reflections and transmis-
sions, respectively, and by the lower-case index k = 1, 2, 3 for the given wave
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type (k = 1 for the qS1-wave, 2 for the qS2-, and 3 for the qP -wave). Let

us assume a wave with the i-the amplitude component Ajg
(j)
i , with j being

again either 1, or 2, or 3, according to the type of the wave, incident from
the first halfspace in Fig. 9. For displacement and traction the BC yield

AT
1 g

(1)T
i +AT

2 g
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i +AT
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i −AR
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(5.77)

where the Xi’s are given as

X
(k)R
i = c

(1)
ijnlνjg

(k)R
n p

(k)R
l ,

X
(k)T
i = c

(2)
ijnlνjg

(k)T
n p

(k)T
l ,

(5.78)

with ν denoting the unit normal to the interface (see Sec. 3.8) and c
(m)
ijkl

being used for the elastic parameters either in the first halfspace (m = 1, for
reflected waves) or in the second halfspace (m = 2, for transmitted waves).
In the above equations, g(k)R or g(k)T, and p(k)R or p(k)T, are used to denote
the polarization and the slowness vectors, respectively, of the generated wave
of the k-th type, involved in the R/T problem. The corresponding quantities
without the upper index R or T relate to the incident wave.

The system (5.77) represents six algebraic equations for six unknown
scalar amplitude factors which can be solved without difficulty. However, in
general anisotropic media no explicit analytical expressions for the slowness
and polarization vectors are available, so that the amplitude factors, as
solutions of the system (5.77), must be sought fully numerically.

In practice it is convenient to modify the system (5.77) dividing it by
the amplitude of the incident wave, and to consider the system for all three
possible incident wave types. Instead of amplitude factors of the generated
waves we then solve the system for the so-called R/T coefficients. Let us
introduce displacement reflection coefficients RR

ij as

RR
ij =

AR
j

Ai

, i, j = 1, 2, 3 . (5.79)

In the above definition, AR
j means the scalar amplitude factor of the reflected

wave of the j-th type, and Ai denotes the scalar amplitude factor of the
incident wave of the i-th type. For reflections let us consider the matrix of
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above defined reflection coefficients

RR =


RR

11 RR
12 RR

13

RR
21 RR

22 RR
23

RR
31 RR

32 RR
33 .

 (5.80)

Figure 22 illustrates schematically meaning of individual reflection coeffi-
cients, the elements of the matrix RR. For transmissions we consider the
matrix of transmission coefficients RT, with elements RT

ij, the meaning of
which is in a straightforward analogy to RR

ij.

Figure 22: Scheme of the system of the reflection coefficients in general
anisotropic medium.

The importance of the R/T coefficients in anisotropic media is mainly in
the possibility of writing compact formulas for multiply reflected or trans-
mitted rays containing the products of all the relevant R/T coefficients at
all points of ray incidence to an interface along the raypath. In general
anisotropy, there are no explicit analytic expressions for the coefficients (like
in isotropic media, see below); they must be found by numerically solving
the corresponding sets of algebraic equations.

In isotropic media we proceed analogously. Let us again assume a smooth-
ly curved interface separating two solid halfspaces in welded contact, so that
the BC controlling the R/T process are exactly the same as we have as-
sumed above: continuity of displacement and traction across the interface.
In isotropic models only two wave types can propagate: the P - and S-waves.
An incident wave can, regardless of whether it is P - or S-, in principle, gen-
erate both of them on each side of the interface. Thus we have to deal with
four R/T waves which together with the incident wave must satisfy the BC.
The BC equations are analogous to (5.77). Despite having less generated
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waves than in the case of anisotropy, the S-waves are represented by ex-
pressions U(S) = Be1 + Ce2 (the equation (3.27) in Sec. 3.1 in which we
have substituted the RCC basis vectors for the polarization vectors), so that
two amplitude factors, B and C, we need to specify their amplitude vec-
tors. For P -waves, linearly polarized, we have the simple expression (3.26):
U(P ) = Ae3. Altogether, for a given incident wave we again have six un-
known amplitude parameters for which we have the set of six BC equations:

ATeT3i +BTeT1i + CTeT2i − AReR3i −BReR1i − CReR2i = Di

ATXT
i +BTY T

i + CTZT
i − ARXR

i −BRY R
i − CRZR

i = Ei

(5.81)

(notation taken from the book by Červený, 2001). The right-hand side
quantities in the above equations differ according to the wave-type of the
incident wave. For the P -wave we substitute:

Di = Ae3i , Ei = AXi , (5.82)

while for the S-wave we write:

Di = Be1i + Ce2i , Ei = BYi + CZi . (5.83)

The quantities Xi, Yi and Zi are introduced only formally to shorten the
written form of the equations (5.81)–(5.83). For example, for the incident
wave, their meaning is the following:

Xi = λ(1)νie3kpk + 2µ(1)e3iνkpk ,

Yi = µ(1)νj(e1ipj + e1jpi) ,

Zi = µ(1)νj(e2ipj + e2jpi) ,

(5.84)

where λ(1), µ(1) are the model parameters of the first halfspace (from which
the wave incidents the interface) and p denotes the corresponding incident
slowness vector. For the R/T waves, distinguished by the upper indices R
and T, the meaning of these quantities is the same, but the proper slowness
vectors, RCC basis vectors and model parameters have to be substituted.
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Let us add one important note to the equations (5.81) – (5.84). The RCC
basis vectors standing in them do not generally form one mutually orthogonal
vector triplet, since they correspond to different waves with different rays.
For example, eR

3 corresponds to the reflected P -wave, while eR
I ’s correspond

to the reflected S-wave, leaving the interface in different direction (unless
the α/β ratio is the same on both sides of the interface).

We can introduce R/T coefficients in a similar way as in the anisotropic
case, using the following indexing convention, both for the incident as well as
the R/T wave: 1 standing for the S1 component of S-wave, corresponding to
the unit vector e1 (eR

1 , eT
1 ), 2 for the S2 component of S-wave, corresponding

to the unit vector e2 (eR
2 , eT

2 ), and 3 for P -wave. The total number of the
coefficients is 18. Similarly as in anisotropic media they form two 3×3 R/T
coefficient matrices. However, the analytical solution of the system (5.81) is
cumbersome.

An important simplification of the BC equation system (and its solution)
in isotropic media can be achieved by choosing a special orientation of the
vectors eI respecting the so-called plane of incidence at the interface.
The plane of incidence is the plane containing the slowness vector of the
incident ray and the unit normal vector to the interface at the point of
incidence. Let us choose the vectors e2, e

R
2 and eT

2 perpendicular to this
plane. Further, let us consider the local Cartesian system with the x3-axis
in the direction of the unit normal to the interface at the point of incidence
and the x1 − x3 coordinate plane coinciding with the plane of incidence.
Then, ν1 = ν2 = 0 and ν3 = 1. For the RCC basis vectors of the incident
wave we can write e32 = e23 = e12 = e21 = 0 and e22 = 1. The same holds
for the relevant vectors of the R/T waves. Under these circumstances the
system (5.81) can be decomposed into two independent subsystems: the so-
called P − SV subsystem of four equations, containing only the AT, BT, AR

and BR unknown amplitude coefficients:

ATeT31 +BTeT11 − AReR31 −BReR11 = D1

ATeT33 +BTeT13 − AReR33 −BReR13 = D3

ATXT
1 +BTY T

1 − ARXR
1 −BRY R

1 = E1

ATXT
3 +BTY T

3 − ARXR
3 −BRY R

3 = E3 ,

(5.85)

and the so-called SH system of two equations for two unknowns CT and CR

95



Asymptotic ray method in seismology: A tutorial

CT − CR = C

CTρ(2)β(2)eT33 − CRρ(1)β(1)eR33 = Cρ(1)β(1)e33 .
(5.86)

The main advantage of the systems (5.85) and (5.86) is that they are
fully decoupled. For example, when a wave with C = 0 (either P -wave
or S-wave polarized in the plane of incidence) incidents at the interface,
the system (5.86) yields zero amplitude coefficients CR and CT, i.e. no S-
wave polarized perpendicularly to the plane of incidence is generated. We
deliberately avoid the traditional terminology ‘SH-wave’ and ‘SV -wave’,
since it may be misleading: they are not independent waves, but only the two
S-wave components. Moreover, the S1 component is not vertically polarized
and, in the case of a generally inclined interface, even the S2 component is
not horizontally polarized, so that it is not useful to use the SV and SH
attributes for them.

Decomposition of the BC equation system due to the specific choice of the
local Cartesian coordinates and the e2 basis vector of all the waves involved
in the R/T problem results in decrease of the number of the R/T coefficients.
Instead of 18 we have only 5 nonvanishing reflection coefficients (see also the
schematic figure 23)

RR =


RR

11 0 RR
13

0 RR
22 0

RR
31 0 RR

33

 , (5.87)

and 5 nonvanishing transmission coefficients (the corresponding matrix RT

is fully analogous to RR).

Figure 23: Scheme of the system of the reflection coefficients in isotropic
media.

The advantage of the approach utilizing the two decomposed subsystems
is obvious for incident P -waves, since solving (5.85) is always simpler than
solving the system (5.81). For S-wave incidenting to the interface the pro-
cedure required is to rotate the RCC basis of the incident wave, computed
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from (4.4), around the vector e3 to make e2 perpendicular to the plane
of incidence. This rotation represents a recalculation of the original S-wave
amplitude components, say B′, C ′ to the new ones, B,C before transforming
the amplitude across the interface.

Analytical expressions for R/T coefficients in isotropic media have been
known in the seismological literature for a long time. The reader may know
them under the name Zöptritz coefficients. The R/T coefficients used in the
RM are exactly the same as those derived for plane waves at a plane interface.
This is not surprising as the special form of the RM zero order solution, when
substituted into the BC, yields exactly the same BC equations for amplitudes
that would be obtained inserting a plane wave solution. When adopting the
corresponding formulas from the literature one has to be careful about the
definition of the R/T coefficients. Besides the displacement coefficient that
we are dealing with in this text, there are also other types of the coefficients
frequently published, for example the coefficients for seismic potentials or
energies.

Figure 24: An example of a typical PP reflection coefficient RR
33 as a function

of the angle of incidence, the acute angle between the incident slowness
vector and the unit normal to the interface. Qualitatively, this example
could correspond to the PP reflection from Moho discontinuity (refraction
index α(1)/α(2) = 0.8).

Let us present and discuss here only one example of the analytic formulas
for the R/T displacement coefficient: the coefficient for the PP reflection
at an interface between two solid halfspaces in welded contact, see figure 24
(for other coefficients see Červený, 2001). The analytical expression for it
reads:
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RR
33 = D−1[q2p2P1P2P3P4 + ρ(1)ρ(2)(β(1)α(2)P1P4 − α(1)β(2)P2P3)

−α(1)β(1)P3P4Y
2 + α(2)β(2)P1P2X

2 − α(1)α(2)β(1)β(2)p2Z2] ,

(5.88)

where the following notation has been used:

D = q2p2P1P2P3P4 + ρ(1)ρ(2)(β(1)α(2)P1P4 + α(1)β(2)P2P3)

+α(1)β(1)P3P4Y
2 + α(2)β(2)P1P2X

2 + α(1)α(2)β(1)β(2)p2Z2 ,

q = 2[ρ(2)(β(2))2 − ρ(1)(β(1))2], X = ρ(2) − qp2 ,

Y = ρ(1) + qp2, Z = ρ(2) − ρ(1) − qp2 ,

P1 = [1− (α(1))2p2]1/2, P2 = [1− (β(1))2p2]1/2 ,

P3 = [1− (α(2))2p2]1/2, P4 = [1− (β(2))2p2]1/2 ,

(5.89)
and p denotes the ray parameter p = sin i/α(1) (the tangential slowness
component) with i being the angle of incidence.

A remarkable feature of the formula (5.88) (together with (5.89)) is that
the expression for the PP reflection coefficient contains all the square roots
P1, P2, P3, P4 (representing normal slowness components of the R/T waves)
and not only the root P1, corresponding to the PP reflection. This is the
consequence of the BC. Once any of these square roots becomes imaginary
(which means that the corresponding generated wave becomes inhomoge-
neous), the reflection coefficient becomes complex-valued. In Fig. 24 this
happens for the angle of incidence 53.13◦. Beyond this angle, the PP reflec-
tion coefficient becomes complex due to the fact that the PP transmitted
wave becomes inhomogeneous. Such an angle is called the critical angle.
For other types of the coefficients and other model parameters even more
(maximum three) critical angles may exist. For the incidence angle larger
than a critical angle (the so-called overcritical incidence), the shape of the
R/T pulse is modified: the real part of the R/T coefficient scales the in-
cident signal while the imaginary part introduces a scaling of the Hilbert
transform of the signal which is superposed to obtain the resulting shape
(see also Chap. 6).

Fig. 24 may serve to elucidate one weakness of the ray method which we
have seen already in the Introduction. From the continuation formula we
know that the ray amplitude decreases with increasing geometrical spread-
ing. In simple models the amplitude usually decreases with raypath length
and, consequently, with distance from the source. For R/T waves the ampli-
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tude moreover follows roughly the shape of the corresponding R/T coefficient
curve, including the steep amplitude increase toward the peak at the criti-
cal distance (the distance corresponding to the critical angle). Thus the
amplitude of a reflected PP -wave, plotted versus distance from the source,
may qualitatively look like the gray line in the figure 25a. The real ampli-
tude, however, would be influenced by interference with the head wave which
comes at close times in the vicinity of the critical distance. The amplitude
curve of the real wavefield may look qualitatively like the black curve in Fig.
25a. The discrepancy between the amplitudes predicted by the RM and the
real ones beyond the critical distance can be also observed in the detailed
figure cut from Fig. 3, see the figure 25b.

Figure 25: a) The RM predicted amplitude (gray) and the real amplitude
(black) affected by interference with head wave beyond the critical angle (a
sketch). b) An example of the amplitude discrepancy for synthetic seismo-
grams calculated by the RM (gray) and FDM (black) for the model PICRO-
COL, see also Fig. 3, Sec. 1.

In this section we have explained the R/T problem for ray amplitudes for
a solid-solid interface only. The other interface type would be characterized
by different BC, however, the corresponding BC equations for amplitudes
could be obtained from the solid-solid interface equations by proper specifi-
cation of the medium parameters. For example, in an isotropic medium we
can insert µ (or β) equal zero for a liquid halfspace. Similarly, all medium
parameters must be set equal to zero for a vacuum. In this way, we can
obtain corresponding R/T coefficients for a solid-fluid interface or the free-
surface coefficients. The coefficients can be calculated directly applying the
Zöpptritz formulas substituting zeros for the relevant model parameters.

The free-surface reflection coefficients are sometimes understood in a ge-
neralized sense by taking into account the fact that the displacement of a
receiver situated at the free surface is affected not only by the incident wave
but also by all the waves reflected from the surface, since at the receiver
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all these waves exist at the same time. Such coefficients are called the co-
efficients of conversion. They can, with advantage, be calculated using
transmission coefficients at the free surface which, as such, have only for-
mal meaning (no wave is transmitted to vacuum). For details, see Červený
(2001).

In layered/blocky media, not only the scalar amplitude factors but also
the ray Jacobian J has to be properly transformed across a structural in-
terface wherever rays incident at the interface and the reflected/transmitted
rays are calculated. Realizing that J is a measure of the cross-sectional area
of the ray tube (see Sec. 5.1), the reader can easily perceive, with the help
of the schematic figure 26, that the ray Jacobian J of the incident wave is
related to the Jacobian J̃ of a R/T wave as

J

J̃
=

tiνi

t̃kνk

= ±cos(i)

cos(̃i)
, (5.90)

where i denotes the angle of incidence and ĩ the angle of reflection/transmis-
sion, ν is the unit normal to the interface, and t and t̃ are the unit tangents
to the rays of the incident and R/T wave, respectively. All the quantities in
(5.90) relate to the point of incidence. For the normal ν oriented ‘against’
the incident wave (see Fig. 26), the ‘+’ sign corresponds to the transmitted
wave, while the ‘-’ sign to the reflected wave. The formula (5.90) is valid
both in isotropic as well as anisotropic structures.

Figure 26: Outline of a ray tube and its cross-sectional area dS⊥ of the wave
incident to and transmitted across a structural interface Σ at a point Q (2D
case).

5.10 Point source ray amplitude in a layered structure. Ray the-
ory Green’s function

Let us have a ray Ω propagating from a point S to a point R through a
layered model (Fig. 27). Let us assume we know the ‘ray history’, i.e. at
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which interfaces the ray is reflected, at which it is transmitted, and at which
it is possibly converted to the ray of other wave type. The task is to compute
the ray solution at R along this ray.

Figure 27: A ray propagating through a layered structure.

We will write the formula for the zero order ray solution along such a ray.
Specifically, let us assume S to be a point source dynamically equivalent to
a single impulse force, so that the corresponding displacement we seek rep-
resents the Green’s function, the important solution in various seismological
applications.

The i-th RM displacement component, along the given ray, at R due to
the single impulse force at S pointing in direction of the n-th Cartesian axis
reads

G
(Ω)
in (R,S, t) = U

(Ω)
in (R,S)δ(A)(t− τ (Ω)(R,S)) , (5.91)

where U
(Ω)
in is the i-th component of the Green’s function amplitude and

τ (Ω) means the travel time along the given ray from S to R. Without loss of
generality, we have assumed the source to act at the time t = 0, not written
explicitly as an argument of the Green’s function. The function δ(A) is the
analytical signal corresponding to the Dirac delta function: δ(A)(t) = δ(t)−
iπ/t. In the above equation, the upper index (Ω) is used to emphasize that
the equation does not yield a complete RM Green’s function, but only the
contribution related to the specific ray Ω. The RM Green’s function would
be obtained by summing contributions related also to other rays connecting
the points S and R, the rays having different ‘ray history’, i.e. the rays
corresponding to different so-called elementary waves (for explanation see
Chap. 6). In the case of multipathing, even more rays with the same ‘ray
history’, starting at S, can be captured by the receiver R, carrying different
contributions to the final RM Green’s function. In the following we treat
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only the contribution due to the ray Ω, but, for the sake of simplicity, we
skip the upper index (Ω) in the equations below.

In anisotropic media, the Cartesian amplitude component UG
in is given as

Uin = gi(R)

[
ρ(S)vg(S)

ρ(R)vg(R)

]1/2 exp(i1
2
πK(R,S))

S(R,S)
WCGn(S) , (5.92)

where gi is the i-th component of the relevant polarization vector, corre-
sponding to the wave type of the last ray segment (the segment in the layer
containing the receiver R), ρ is density, vg the group velocity magnitude, K
the index of the ray trajectory controlling possible phase shift due to caus-
tics between the points S and R, S(R,S) denotes the relative geometrical
spreading and Gn(S) is the scalar radiation function corresponding to a unit
single force in n-th direction

Gn(S) = gn(S)[4πρ(S)c(S)]−1 exp[i
1

2
πσ0(S)] , (5.93)

(see (5.75)). The quantity WC represents the product of all normalized
R/T coefficients corresponding to the ray interaction with interfaces in
the model:

WC =
N∏

k=1

W(Qk)

[
ρ(Q̃k)v

g(Q̃k) cos i(Q̃k)

ρ(Qk)vg(Qk) cos i(Qk)

]1/2

. (5.94)

The ‘normalization’ factor in square brackets ensures that the moduli of the
normalized R/T coefficients never exceeds unity, which does not hold for the
displacement coefficients introduced in the previous section. For explanation
see Červený (2001). In the above equation, Qk is the k-th point of incidence
on the way of the raypath and Q̃k is the adjoint starting point of the gen-
erated wave, i.e., in the case of a reflection it coincides with the point Qk,
while for a transmission it is the point situated on the opposite side of the
interface. The group velocity magnitude at such a point corresponds to the
type of the wave the ray of which we follow. The angle i(Qk) is the angle of
incidence and i(Q̃k) is the relevant R/T angle. The above formula is clearly
understandable. Let us consider the first interface and the point of incidence
Q1. From S to Q1 the standard continuation formula for a point source is ap-
plied, containing the expression [ρ(Q1)v

g(Q1)]
1/2 in denominator. From Q1
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to Q̃1 the scalar amplitude factor must be recalculated applying the relevant
displacement R/T coefficient (for the ray in Fig. 27 it is the transmission
coefficient, W(Q1) = RT

lm(Q1), with l defining the type of the incident and
m the type of the transmitted wave). Transforming the geometrical spread-
ing across the interface gives rise to the factor [cos i(Q̃1)/ cos i(Q1)]

1/2 in the
expression for the amplitude at Q̃1, see (5.90). The point Q̃1 is the new
initial point for the continuation formula, applied for the ray segment from
Q̃1 to the next point of incidence, Q2, so that the expression ρ(Q̃1)v

g(Q̃1)
appears in the nominator and [ρ(Q2)v

g(Q2)]
1/2 in the denominator of the

formula. The amplitude must be transformed across the second interface
and the same calculation is successively applied at each interface the ray
interacts with. Thus, in the presence of interfaces between the points S
and R, the final amplitude multiplier is WC given by the equation (5.94).
When the receiver R is situated on the earth’s surface, relevant free-surface
coefficients (the coefficients of conversion) at R should be also involved in
the product WC .

The final expression for the RM Green’s function contribution at R, due
to the ray Ω propagating through an anisotropic layered structure is

Gin(R,S, t) =
gn(S)gi(R)

4π[ρ(S)ρ(R)c(S)c(R)]1/2S(R,S)
exp i[−1

2
π(K(R,S)+σ0(S))]

×(
N∏

k=1

W(Qk)

[
ρ(Q̃k)v

g(Q̃k) cos i(Q̃k)

ρ(Qk)vg(Qk) cos i(Qk)

]1/2

)δ(A)(t− τ(R,S)) .

(5.95)

As it is discussed by Červený (2001), the relative geometrical spreading
is reciprocal when interchanging the roles of the points S and R, i.e. re-
versing the propagation direction. The same holds also for the normalized
R/T coefficients forming WC as well as for the argument of the exponential
function in (5.95). Thus the RM Green’s function in anisotropic media is
reciprocal:

Gin(R,S, t) = Gni(S,R, t) . (5.96)

To find the ray solution along Ω in an isotropic structure, we proceed in
a similar way and the final expression for the RM Green’s contribution at R
is analogous to (5.95) with proper v substituted for vg; v equals either α or β
according to the wave type corresponding to given ray segment. Of course,
the proper radiation function, corresponding to the isotropic model, has to
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be inserted. The most remarkable difference is that in isotropic media the
continuation formulas (derived in Sec. 5.6) correspond to the RCC ampli-
tude components. Thus, we deal with the RCC amplitude vector equal to
(B,C, 0)T (T used to denote transposition) for an S-wave, or to (0, 0, A)T for
a P -wave. Since along the ray Ω both wave types may occur in the ray his-
tory, we consider formally, with advantage, the joint RCC amplitude vector
(B,C,A)T in the continuation formula, but it must be correctly interpreted
from the physical point of view (independently for the P - and S-waves). The
same holds for the RCC radiation vector composed from the RCC radiation
functions. For the unit single force pointing along the n-th Cartesian axis
the RCC components of the radiation function read (see (5.74))

Gn(q)
i (S) =

1

4πρ(S)v(S)
Hni(S) , (5.97)

where we put i = 3 for P -waves (v = α) and i = 1, 2 for S-waves (v = β).
Before the final amplitude expression is used in seismological applications
it is useful to transform it into the general Cartesian system, i.e. we have
to multiply the RCC amplitude vector by the transformation matrix H, see
Sec. 4.1. Thus the final Green’s function along Ω in a layered isotropic
medium reads

Gin(R,S, t) =
1

4π[ρ(S)ρ(R)v(S)v(R)]1/2S(R,S)
exp(i1

2
πK(R,S))

×Win(R,S)δ(A)(t− τ(R, S)) ,

(5.98)

where Win(R,S) = Hik(R)WC
klHnl(S) with WC being the 3×3 matrix re-

sulting from the product of the relevant matrices of the normalized R/T
coefficients along the raypath (possibly containing the coefficient of conver-
sion in the case of the receiver situated on the earth’s surface):

WC =
N∏

k=1

WT (Qk)

[
ρ(Q̃k)v(Q̃k) cos i(Q̃k)

ρ(Qk)v(Qk) cos i(Qk)

]1/2

, (5.99)

where WT (Qk) is the transposed matrix of the relevant Zöptritz coefficients
at the point Qk (either reflection or transmission) and v stands for the P - or
S- wave velocity. The exact meaning of the product Win(R,S) depends on

104



Ray dynamics

the wave type of the first and last ray segments. There are four alternatives
how to interpret this quantity:
1)P -wave at S and P -wave at R results in Win(R,S) = Hi3(R)WC

33Hn3(S),
2)P -wave at S and S-wave at R results in Win(R,S) = HiK(R)WC

K3Hn3(S),
3)S-wave at S and P -wave at R results in Win(R,S) = Hi3(R)WC

3LHnL(S),
and finally
4)S-wave at S and S-wave at R results in Win(R,S) = HiK(R)WC

KLHnL(S).
Similarly as in anisotropic media, in isotropic models it is also possible to

show that Gin(R,S, t) in the equation (5.98) is reciprocal when interchanging
the source and receiver points (for details see Červený, 2001)

Gin(R,S, t) = Gni(S,R, t) . (5.100)

The reader probably knows well the reciprocity of a general elastody-
namic Green’s function in homogeneous, isotropic, unbounded medium. Let
us emphasize that here we speak on the Green’s function reciprocity in in-
homogeneous, layered, possibly bounded models, both isotropic as well as
anisotropic. Nevertheless, the reciprocity has not been proved in general,
but only under the assumption of our high-frequency asymptotic zero-order
solution.

For the reader’s convenience let us end this section with the expressions
for the RM Green’s functions in the frequency domain which are also very
useful and may allow us to simplify the calculus in many seismological ap-
plications. In anisotropic media, the frequency domain Green’s function is
given as

Gin(R,S, ω) =
gn(S)gi(R)

4π[ρ(S)ρ(R)c(S)c(R)]1/2S(R,S)

×(
N∏

k=1

W(Qk)

[
ρ(Q̃k)v

g(Q̃k) cos i(Q̃k)

ρ(Qk)vg(Qk) cos i(Qk)

]1/2

)

× exp i[−1
2
π(K(R,S) + σ0(S)) + ωτ(R,S)] ,

(5.101)

while, in the case of isotropy the expression reads

Gin(R,S, ω) =
1

4π[ρ(S)ρ(R)v(S)v(R)]1/2S(R,S)
Hik(R)WC

klHnl(S)

× exp(i1
2
πK(R,S) + iωτ(R,S)) .

(5.102)
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6 Ray synthetic seismograms

In this chapter we explain the brief basic steps of a procedure commonly
used to calculate ray synthetic wavefields. For the sake of simplicity we
consider isotropic models only; in anisotropic media the procedure would
be analogous in many respects, but a more complicated model description
would be necessary (more parameters have to be specified), more wave types
can possibly propagate, and a special treatment should be adopted regarding
possible quasi-shear wave singularities. The procedure described is applied,
for example, in the program packages SEIS (Červený and Pšenč́ık, 1984,
2002) and CRT (Červený et al., 1988), designed for computing the ray syn-
thetic seismograms in laterally varying 2D and/or 3D isotropic structures.
Other ray tracing codes may use a procedure modified in details, but the ba-
sic steps should be analogous to those explained below. For details see also
Červený et al. (1988). Some ray tracers compute the wavefields completely
in the time domain. We, however, prefer to evaluate the Fourier spectrum
first and then use the inverse Fourier transform to obtain synthetic seis-
mograms which allows us to take into account certain frequency-dependent
effects also.

Applying the RM, we can directly calculate the relevant solution (for
example, displacement) due to a point source. Optionally we can calculate
the ray theory Green’s function by specifying the proper source type (point
force) and time dependence of the input signal (Dirac delta function). In
the case of a finite extent source the solution is obtained by discretizing
the representation integral which results finally in a superposition of point
sources regularly spaced along the fault surface.

This section is meant to not only provide the reader with basic ideas
about ray synthetic wavefield calculation, but also with knowledge useful to
better understanding the computer code ZRAYAMP, as well as the structure
of its input/output data (see the chapter 8). The program is designed for
fast ray calculations in spherically symmetric (1D) models and it is useful
for numerical exercises in this course. The code and several solved numerical
examples can be found on the attached CD.

6.1 The basic procedure step-by-step

Step 1
Before any ray calculations start, the structure have to be properly specified.
The model suitable for the RM can contain several first-order discontinuities
(interfaces), but the structure in between them should be smooth. A fine
layering (with layer thicknesses smaller than the maximum seismic wave-

106



Ray synthetic seismograms

length) should be avoided as it violates the RM applicability conditions (see
Chap. 7). Stacks of thin layers are inappropriate even in the case of linear
velocity increase inside the layers, separated by second-order interfaces with
jumps of model parameter derivatives, not of the parameters themselves.
Such structural features would lead to undesirable amplitude effects (see,
for example, Červený, 1985). Figure 28 shows schematically an example
of a structure containing thin homogeneous layers separated by first-order
interfaces (left) being replaced by a smooth approximation of the structure
seen in Fig. 28 (right), keeping the most pronounced velocity jump.

Figure 28: An example of the approximation of the model for the RM: a
step-wise structure (left) should be replaced by its smoothed approximation
(right) to avoid fine layering in the model. The largest discontinuity in the
model is retained.

Apart from interfaces, the model should be specified in such a way to
allow the model parameters (e.g., propagation velocities α and β in the case
of an isotropic structure) to be smoothly interpolated in any point x. In
order to solve the RTS, the parameters must be known at any point of the
model. In many ray tracing programs the model is specified in a grid and
the cubic spline interpolation is used as a relatively robust technique, pro-
viding the interpolant smooth together with its derivatives. The user should
however specify the model in such a way to avoid undesirable oscillations
of the interpolant. At least a visual inspection of the interpolated structure
before the ray computation starts is very worthwhile.

If the structure is known one has to specify the position of the source as
well as the receiver(s) in the model.

Step 2
The RM is able to return synthetic seismograms being a superposition of a
finite number of the so-called elementary waves, treated individually. These
are the waves of a given type (i.e., P - or S-) propagating throughout the
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model in a way uniquely specified. At interfaces they can be transmitted or
reflected (possibly multiply) and also be converted (from P - to S- and vice
versa). For example, let us consider the case of one layer above a halfspace
with a source situated in the layer and a receiver at the surface. Restricting
ourselves to direct and primarily reflected (and possibly converted) waves,
we can consider six elementary waves: two direct waves, P and S, and four
reflections, PP , SS, PS, SP . Allowing for multiples, the number of possi-
ble elementary waves is infinite. As the complexity of the medium (in terms
of number of layers) gradually grows, the elementary wave description be-
comes more complex as the ray trajectory of such a wave can contain many
segments propagating through individual layers. The list of the elementary
waves taken into account in ray synthetics depends on expected amplitudes
(the waves weak in amplitude, like those reflected/converted many times in
the structure, can be neglected) and the expected arrival times (only the
waves coming in the time window of interest should be included). The final
decision about the list may differ for different specific applications and it
is up to the user of the ray-tracing program. The number of the consid-
ered waves should be limited to, let us say several tens, otherwise we could
lose the advantage of the computing speed of the RM, especially when the
so-called two-point ray tracing is needed (see below).

Each elementary wave under consideration has to be uniquely specified
by a proper coding. The simplest way to do this is to utilize the numbers
assigned to individual layers/blocks in the model. The P - and S-wave seg-
ments can be further distinguished by the ‘+’ and ‘-’ signs, respectively. In
figure 29a we see an example of rays of individual elementary waves in a
three-layered structure, provided the source radiates P -wave only, no mul-
tiples are allowed and conversions are allowed only in connection with the
reflection. Fig. 29b provides the codes of the considered elementary waves,
the rays of which are plotted in part a. This type of coding of elementary
waves is adopted in the program ZRAYAMP (see Chap. 8).

Step 3
For each elementary wave under consideration the rays connecting the source
and the specified receivers must be traced. This is because, in the standard
zero-order RM, we can evaluate the wavefield along rays only. The rays are
traced by solving a proper RTS. However, this requires us to perform the so-
called two-point ray tracing (see Sec. 6.2) in order to find a ray starting
at the source point and terminating at the given receiver. We are faced
with a situation where we do not know in advance initial direction of such a
ray. Two possibilities of how to solve this problem are described in section
6.2. However, in complex models, this part of the calculation represents
usually the most time consuming part of the whole synthetic seismogram
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Figure 29: An example of elementary waves taken into account in a three-
layered model: (a) the rays of the individual waves, generated as P -waves
at the source, propagating through the model, (b) the numerical codes spec-
ifying these waves, (c) the same as in the part (a), but for the case of the
‘two-point’ rays.

computation.

After a successful ray tracing, for every ray captured in the given re-
ceiver we have to store the travel time corresponding to the ray endpoint
(receiver). The slowness at the ray endpoint should also be stored for pur-
poses of succeeding calculations (for example, it enables us to calculate the
e3 RCC basis vector). Besides these quantities related to the ray endpoint,
it is also useful to store the initial direction of the ray. This allows us to
specify, with advantage, the type of the source in a later stage of the cal-
culation by means of multiplication of the amplitude by a proper radiation
function factor.

Step 4
Along ‘successful’ rays captured at the specified receivers, the RCC basis vec-
tors should be evaluated (this is dropped in the case of in-plane rays in which
the knowledge of the slowness is sufficient to determine the complete RCC
basis system, see Sec. 4.1). Further, we have to calculate the geometrical
spreading, preferably by solving the DRT system, or by the ‘finite-difference’
approach, see Sec. 5.2. For the evaluation of ray amplitudes, the geometrical
spreading should be known at the ray endpoint. In the presence of structural
interfaces, the RCC basis vectors should be known, in addition to the ray
endpoint, at all the points of incidence of the ray to these interfaces. This
allows us to apply the decomposed BC systems (5.85) and (5.86) in step 5.

Note that we have described the solution of the DRT system and the
evaluation of the RCC basis as an independent step in the procedure. Op-
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tionally, all the corresponding equations can be solved together with the RTS
as the ray is traced from one point to the next point. Nevertheless, solving
the equations separately brings two advantages: 1) we can consider different
flow parameters in both these calculation phases, and, 2) we evaluate the
RCC basis and the geometrical spreading only along the ‘successful’ rays
connecting the source and a given receiver. For example, in the shooting
method described in Sec. 6.2, certain trial rays, after completition of their
computation, are rejected. Thus it would be useless to perform parallelly
any other calculations along them.

Step 5
In the presence of structural interfaces in the model, the proper R/T coeffi-
cients have to be evaluated at each interface that the ray under consideration
incidents. For this, the RCC basis system at a point of incidence should be
rotated properly to coincide with the local coordinate system used in evalu-
ating the coefficients. The coefficients are successively multiplied, according
to the equation (5.99). At the free surface, the corresponding coefficients of
conversion have to be involved.

After the completion of this phase of the calculation, at each ray endpoint
we know, besides the travel time, also the geometrical spreading and the
product of all the relevant normalized R/T coefficients along the ray paths
— the quantities necessary to calculate the ray amplitude components in the
RCC system. The multiplication by the proper amplitude factor due to the
radiation pattern can be involved in this stage (which would require us to
specify the type of the point source). Such an approach has the advantage
that once the rays are computed we can easily alternate the type of the
source (changing the multiplication factors only) without recomputing the
rays.

In the procedure proposed here, the amplitudes are computed in the
RCC system, so that finally we have to transform the RCC amplitude com-
ponents to the general Cartesian coordinates, more suitable for practical
applications. For this we use the relevant transformation matrix H.

At this point we split the procedure description into two branches according
to whether we compute the seismograms in the time or in the frequency
domain. Let us explain first the approach in the time domain.

Step 6a
We have to sum contributions (indexed by l = 1, . . . , L) for all the rays con-
necting the source and the given receiver. The summation is basically over all
the elementary waves under consideration, but, in the case of multipathing,
for certain elementary waves we can have more than one contribution. We
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compute the so-called impulse seismogram. Its n-th Cartesian component
is given by a complex-valued sum

uimp
n (t, R) =

L∑
l=1

{Un(R)δ(t− τ(R))}(l) , (6.1)

where Un is the n-th component of the ray amplitude of the individual
contribution, computed in the previous steps (it involves the radiation pat-
tern, R/T coefficients, geometrical spreading, etc.). Note that the complex-
valuedness of the impulse seismogram (6.1) is due to possible complex-
valuedness of the amplitude coefficients Un, for example as a consequence of
complex-valued R/T coefficients for overcritical ray incidence.

Step 7a
The final synthetic seismogram is then obtained from the impulse seismo-
gram by convolving it with the proper analytical signal (corresponding to
the source-time function, see Sec. 6.3) and taking the real part of the con-
volution

un(t, R) = <{F (t)∗uimp
n (t, R)} = <{F (t)∗

L∑
l=1

{Un(R)δ(t−τ(R))}(l)} . (6.2)

Let us mention that the seismogram (6.2) is not generally the same as if we
would convolve the impulse seismogram with the real-part of the analytic
signal, the actual source-time function (see Sec. 6.3). The shape of the wave-
form may be influenced not only by the source-time function, but also by its
Hilbert transform, the imaginary part of the corresponding analytical signal.

Step 6b
In the frequency domain we first evaluate the so-called frequency re-
sponse. It also consists of a sum of L contributions for all the rays con-
necting the source and the given receiver (R). The sum corresponds to the
Fourier spectrum of the impulse seismogram (6.1) and is given as

ufr
n (ω,R) =

L∑
l=1

{Un(R) exp(iωτ(R))}(l) . (6.3)

In practice, the frequency response must be evaluated for discrete frequen-
cies ωk running over the frequency range of interest with sufficiently small
frequency step ∆ω. This can be done in a very efficient way, applying the
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so-called fast frequency response algorithm:

ufr
n (ωk, R) =

∑L
l=1{Un(R) exp(iωkτ(R))}(l)

=
∑L

l=1{Un(R) exp[i(ω1 + (k − 1)∆ω)τ(R)]}(l)

=
∑L

l=1{Un(R) exp[iω1τ(R)] exp[i∆ωτ(R)]k−1}(l)

= ufr
n (ω1, R)χk−1 ,

(6.4)

where χ is the complex-valued constant χ = exp[i∆ωτ(R)] and ufr
n (ω1, R)

is the frequency response evaluated for the first frequency of the range, ω1.
Knowing the frequency response for the first frequency ω1 we obtain the re-
sponse for every other frequency by one complex-valued multiplication by the
constant χ. This approach avoids the necessity of a time-consuming evalua-
tion of trigonometric functions for each frequency step, which increases the
efficiency of calculations considerably, so that computing the synthetic seis-
mograms in the frequency domain does not represent any numerical problem.
The frequency domain approach provides the possibility to easily adapt the
method to allow for a frequency-dependent amplitude, for example, when in-
volving higher-order terms of the ray series, or considering certain dissipative
filters, instrumental filters, etc. The approach may be also useful in consid-
ering a frequency-dependent radiation pattern and also when combining the
RM with other methods in a hybrid computation, since the other methods
usually provide the frequency-dependent amplitudes. Certain other inter-
esting applications of the frequency domain approach are briefly discussed
by Červený (2001).

Step 7b
The frequency response has to be multiplied by the spectrum of the ana-
lytical signal corresponding to the source-time function. Examples of such
functions can be found in Sec. 6.3. In this way we come to the spectrum
of the synthetic seismogram. By performing the inverse Fourier transform,
taking the real part of it, we obtain the final synthetic seismogram.

6.2 Boundary ray tracing. Two-point ray tracing

Boundary ray tracing is a procedure necessary to be performed when the
ray wavefield is to be calculated, for example, at specified receivers. In
such a procedure, the ray is not specified by its initial conditions, but by
other conditions related to different points on the ray. A special case of the
boundary ray tracing is the so-called two-point ray tracing in which we
seek the ray that connects two fixed points, say S and R. Note that this
corresponds to the definition of the ray by the Fermat variational principle.
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The most important approaches to perform the two-point ray tracing
are:

1. Shooting method. This is a procedure using initial-value ray trac-
ing (rays are specified by initial direction, e.g. take-off angles) from
the point S in an iterative loop, changing the initial direction, until
a successful ray (captured at R with a prescribed tolerance) is found.
The method is illustrated in the figure 30a. In principle, the shooting
method is able to find even more than one ray of the given elemen-
tary wave connecting the two points (the case of multipathing). The
method is applied in the program ZRAYAMP (Chap. 8).

2. Bending method — a procedure in which an initial ray path is
guessed and perturbed iteratively to find the relevant two-point ray,
see Fig. 30b. The guessed trajectory may be an auxiliary reference
curve connecting points S and R, e.g. the straight line; for its pertur-
bation a method based on minimizing the travel time or fitting the ray
tracing equations can be used.

Figure 30: Shooting (a) and bending (b) methods (from Červený, 2001).

For more details concerning the boundary ray tracing the reader is re-
ferred to the book by Červený (2001).

6.3 Useful time functions broadly used in the ray method

Here we present several examples of the time signals having been broadly
used in the computation of the ray synthetic seismograms. Note that when
interpreted as the real time function at the source, for example when com-
paring the seismograms with the ones obtained by other methods, these
signals would correspond to the particle velocity at source (i.e. the first
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time derivative of displacement, for example the slip velocity in the case
of a fault-type source). The source-time functions, f(t), presented below
are real-valued; the corresponding analytical signals are obtained by adding
imaginary parts equal to their Hilbert transforms H[f(t)]. In the zero-order
RM, the form of the analytical signal, specified at one point of ray (e.g.,
the source point), remains preserved along the entire ray. Note that this no
longer holds for the actual shape of the solution in time (real part of the
solution) when caustics are present on the raypath and also when the ray
incidents overcritically a structural interface.

The most popular source-time functions used in the ray method are:

1. Ricker signal, defined using two free parameters b and ti (initial time)
as

f(t) = [1− 2b2(t− ti)
2] exp[−b(t− ti)

2] . (6.5)

An example of such a signal (with b = 8 and ti = 1s), together with
its Hilbert transform, is shown in the figure 31.

Figure 31: An example of the Ricker signal f(t) and its Hilbert
transform H[f(t)] (from Červený, 2001).

2. Gabor signal, defined by the use of four free parameters, the prevail-
ing frequency ωM , υ controlling the width of the signal, phase shift $
and initial time ti, as

f(t) = exp[−(ωM(t− ti/υ)
2] cos[ωM(t− ti) +$] . (6.6)

For the choice ωM = 15.7Hz, υ = 4, $ = 0, and ti = 1s the signal is
plotted, together with its Hilbert transform, in Fig. 32.
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Figure 32: An example of the Gabor signal f(t) and its Hilbert
transform H[f(t)] (from Červený, 2001).

3. Berlage signal. It equals zero up to time ti. In later times it is given
as

f(t) = (t− ti)
N exp[−b(t− ti)] sin[ωM(t− ti)], t > ti , (6.7)

where ωM , b and N are free parameters. For ti = 0.5s and ωM =
15.7Hz, b = 3, N = 0, the signal and the corresponding Hilbert trans-
form are shown in figure 33.

Figure 33: An example of the Berlage signal f(t) and its Hilbert
transform H[f(t)] (from Červený, 2001).
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Why are such signals more useful for the RM than others? First, they
are high-frequency signals, which means a low amplitude at zero frequency
and in its vicinity. Since the RM deals with, in principle, a high-frequency
approximation of the wavefield, the zero frequency and low frequencies close
to zero must be removed anyway by a proper filtering. In the case of the
above signals, such a filtering would not change their shape considerably.
The second advantage concerns the question of causality. Except for the
causal Berlage signal, the above signals are not strictly causal, but they
can be qualified as ‘effectively’ causal. The same holds for their Hilbert
transforms. The Hilbert transform contributes to the actual time behavior
of the solution provided the ray under consideration incidents overcritically
a structural interface, which results in a complex-valued R/T coefficient, as
explained in Sec. 5.9.

Considering both of the above-mentioned aspects it is now clear why
certain time signals, commonly used in other methods (the box-car, for
example), are not suitable for the RM unless they are properly modified
(e.g., by a suitable high-pass filtering).

116



7 Ray theory validity range

The asymptotic ray theory is based on the asymptotic ray series for fre-
quency ω tending to infinity. In practical seismic applications, however, the
maximum frequency is of a finite value. The applicability of the asymptotic
ray theory is limited by several qualitative conditions, usually formulated
as certain inequalities for the frequency of the wavefield or alternatively,
for the wavelength. The inequalities relate the frequency (wavelength) to
certain quantities, derived from the model parameters or from the wave-
field parameters, by the use of operator �, i.e., ‘much larger’ (�, ‘much
smaller’). If any of these inequalities is not satisfied, the RM results are not
generally reliable and may even be completely wrong. The problem is that it
is difficult to estimate to what extent the results are wrong in such a case. In
practice, it is not clear what the� or� really means, i.e., by how much the
above quantities should be larger (shorter) than the frequency (wavelength).
Numerical experiments confirm that the results may be reasonably accurate
and acceptable even in certain situations in which some of the conditions are
not strictly satisfied. Beydoun and Ben-Menahem (1985) have studied the
breakdown of the asymptotic ray theory on certain canonical examples com-
paring the ray results with the exact solution obtained by the FDM or dis-
crete wave number method (Bouchon, 1981). Some authors (e.g., Beydoun
and Keho, 1987) even propose certain recommendations, based on numerical
tests, as to how to translate the inequalities into the numbers determining
how many times the frequency (or wavelength) should be larger (or smaller)
than certain quantities. They propose the values of order of units (i.e., up to
ten-times) that guarantee the inequalities to be well satisfied. However, due
to the numerical costs of the ‘exact’ methods, especially for high frequencies
which are of interest to us, such numerical tests can be done for relatively
simple models which are, moreover, relatively small in that the wavefield is
not computed too far from the source. In no case can the above-mentioned
recommendations be considered as universally applicable rules.

The following general validity conditions, formulated using the wave-
length λ in a qualitative way, are presented by Červený (2001). They are, in
principle, consistent with the conditions given by Ben-Menahem and Bey-
doun (1985) and Beydoun and Keho (1987). The conditions are as follows:

1. Let us consider the so-called characteristic lengths of the model, li, i =
1, 2, . . . . Among these quantities there are, for example, dimensions of
the model, source-receiver distance, layer thicknesses hk (k = 1, . . . , K
with K being the number of layers in the model), radii of curvature
of structural interfaces Kj, (j = 1, . . . , K − 1), but also the scale
length of inhomogeneities like v/|∇v| (with v being α or β, the P -
or S-wave speed, respectively), ρ/|∇ρ|, where ρ denotes density, etc.
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The first condition requires that the wavelength considered in the RM
calculations is much smaller than the minimum characteristic length

λ� min(l1, l2, . . . ) . (7.1)

This condition expresses the high-frequency character of the wavefield.
Comparisons of the RM solutions with exact solutions, if they are
available, show, however, that the RM can be applied even in certain
situations when some of the characteristic lengths do not satisfy the
condition (7.1). It has been shown, for example, that for the RM it is
much more critical if the radii of interface curvature or scale lengths
of inhomogeneities violate the condition than if layer thicknesses are
not much larger than λ, or they are even comparable to λ (see Moczo
et al., 1987).

Alternatively, some authors express this condition in frequencies us-
ing the so-called medium threshold frequency ω0 = 1

2
max(|∇α|, |∇β|,

α|∇ρ|/ρ, α/hi, αKj, . . . ) in which case the condition reads ω � ω0.
Beydoun and Ben-Menahem (1985) call this condition the mode decou-
pling condition. It has been proved for certain simple isotropic models
that this condition restricts the frequency to be high enough for decou-
pling elastic waves into P - and S- waves. Ben-Menahem and Beydoun
(1985) have shown that the mode decoupling condition implicitly con-
tains the assumption of slow variations (with respect to wavelength)
of the slowness vector. The authors also explicitly specify the so-called
high-frequency condition, requiring ω � ωc = v(∇2A/A)

1
2 , where ωc

is called the cut-off frequency and A denotes the scalar ray amplitude
factor (e.g., the RCC amplitude component). The condition requires
A to be a sufficiently slowly varying function of position within a wave-
length. It can be included into the above condition (7.1) by involving
lc =

√
A/∇2A in the list of li’s.

Let us point out that this condition elucidates what is meant by a high-
frequency which qualifies the RM to be applied as a high-frequency
approximation. It is clear that an answer to the question whether a
given frequency is high enough for the RM or not depends only on
the structure model considered. In slowly varying smooth models, far
from the source as well as the model boundaries and interfaces, it may
happen that the threshold frequency is nominally low (for example,
lower than 1Hz).

2. The second condition given by Červený (2001) relates the wavelength
to the distance d from a surface where the wavefield is not regular, like
a caustic surface, shadow zone boundary, etc. It requires the wavefield
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to be computed not closer to these surfaces than at distances much
larger than the wavelength under consideration. The condition reads

λ� d . (7.2)

One may consider this condition to be involved in the above condition
(7.1) requiring λ � lc =

√
A/∇2A. Indeed, this requirement, in

principle, restricts the RM to be used in a close vicinity of surfaces
along which the ray field is not regular because the ray amplitude
obviously violates the condition there.

In many textbooks on the ray theory, there can be found the third qua-
litative condition restricting maximum length of rays. This condition, how-
ever, becomes important only when higher-order terms of the ray series are
involved. For the zero-order solution it is of no concern. Since in these
course notes we concentrate mainly on the zero-order solution, we will skip
this condition for its irrelevance to our context.

The above presented conditions are written with an implicit assumption
of isotropic models. Possibly slightly modified, they can be considered for
anisotropic models as well (this is why the equations are not framed). How-
ever, in anisotropic structures an additional condition must be taken into
account – the condition ensuring that the quasi-shear waves are not coupled
(see Kravtsov and Orlov, 1990, Pšenč́ık, 1994). The condition reads

c̄|c,i|
ω

� ∆c , (7.3)

where ω is the frequency prevailing in the wavefield, c̄ means the average
of the phase velocities of both quasi-shear waves propagating in the same
direction, |c,i| is the magnitude of the larger of the gradients of the phase
velocities, and ∆c is the difference between the phase velocities of the two
qS-waves.

Another possibility to judge the applicability of the RM has been pro-
posed by Popov and Camerlynk (1996). They suggest a criterion based on
the theory of asymptotic series (see, Sec. 2.3). The criterion relates the
amplitudes of the zero- and first-order terms in the ray series. The basic
idea is to detect, for a given frequency, whether there is a descending branch
in behavior of individual terms in the ray series with respect to the index of
the series. If not, the ray series as such cannot be used to approximate the
solution. Indeed, if the terms in the series successively increase, it makes no
sense to sum up to any N (including N = 0) since the error, estimated by
(2.18), is higher in order than the approximated value. Note that, in con-
trast to the previously mentioned condition, this one concerns the validity
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of the zero-order term, although a higher-order term is taken into account
in the formulation of the condition. Although the condition itself is very
simple, it is not very suitable for practical use. In order to check whether it
is satisfied we would have to compute the first-order term of the ray series.

Kravtsov and Orlov (1980) propose more quantitative RM validity condi-
tions, based on the concept of the so-called Fresnel volumes. The Fresnel
volumes are sometimes called also the physical rays in contrast to the ‘math-
ematical’ rays of infinitely small thickness. Let us assume a ray Ω from a
point S to a point R. The RM wavefield at R is directly influenced by the
structure parameters (and their variations) along the ray itself, i.e. only at
points through which the ray passes. However, from various numerical ex-
periments using other numerical techniques yielding an ‘exact’ solution, as
well as from physical measurements it follows that in reality, the wavefield
at R is also affected by the parameters in a certain vicinity of the ray Ω.
This vicinity represents the Fresnel volume. Kravtsov and Orlov (1980) pro-
pose a very simple definition of the Fresnel volume in terms of travel times,
assuming a point F in the vicinity of Ω (see figure 34). For example, for a
monochromatic wave of frequency ω, propagating from S to R, the point F
belongs to the Fresnel volume corresponding to the ray Ω from the point S
to the point R only if

|τ(F, S) + τ(R,F )− τ(R,S)| < πω−1 , (7.4)

where τ(B,A) means the travel time the wave needs to reach the point B
from the point A. The physical meaning of this condition is obvious: the
points for which the time difference on the left-hand side of the inequality
(7.4) is larger than one half of the period (π/ω) do not contribute signifi-
cantly to the wavefield at R because of a destructive interference. Clearly,
the width of the volume depends on frequency: the higher the frequency,
the narrower the volume is.

To determine the Fresnel volumes in the model we need to know travel
times not only along rays but also those corresponding to virtual points in
their vicinity. An effective way to approximate these times is to calculate the
so-called paraxial times, for which a solution of the DRT system is essential.
However, such a paraxial approximation is beyond the scope of these course
notes. For details see Červený, 2001. The Fresnel volumes have found many
applications in seismology as well as in seismic exploration, see, e.g., Lindsley
(1989), Knapp (1991) or Kvasnička and Janský (1991).

The Fresnel volume RM validity conditions are as follows:

1. Ray amplitude, the slowness vector as well as the medium parameters
should vary only slightly over a cross-sectional area of the Fresnel vol-
ume. This condition can be easily understood from the point of view
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Figure 34: A Fresnel volume (2-D section) corresponding to the
ray Ω connecting the points S and R.

of the underlying physics: since the ray synthetic wavefield, in prin-
ciple, carries ‘information’ from points along the ray only, it would
not be affected by other points inside the Fresnel volume while the
real wavefield would be influenced by them. So, the RM would return
erroneous results in the case of significant changes of the solution and
model parameters inside the volume. Kravtsov and Orlov quantify the
conditions using rF , the maximum cross-sectional dimension of the
given Fresnel volume, as

rF

∣∣∣∣∇⊥v

v

∣∣∣∣ � 1, ... , (7.5)

where instead of v (propagation velocity) other medium parameters or
quantities as slowness components and amplitude factors may stand.
The symbol ∇⊥ denotes the gradient perpendicular to the ray.

2. In the case of more rays arriving at the same receiver point, the cor-
responding Fresnel volumes must not penetrate into each other signif-
icantly. This can be expressed as

V∪VFi
� V∩VFi

, (7.6)

where V∪VFi
denotes the sum of all the volumes VFi

, while V∩VFi
their

common part.

Kravtsov and Orlov have proved in many special cases that the Fresnel
volume conditions can replace other validity conditions proposed by other
authors, usually hard to be translated in quantitative criteria suitable for
a practical use. However, neither of the Fresnel conditions are easy to use
in practice in deciding the applicability of the RM or even in estimating its
accuracy.
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All the above-mentioned conditions have been studied, on canonical ex-
amples, mostly in isotropic media. Although some of the conditions could,
in principle, be generalized for the case of anisotropy (for example the Fres-
nel volume conditions), it is not clear how relevant the conditions would
be in such a case. As it has been already mentioned, in anisotropic media,
compared to isotropic models, the situation is much more complicated due
to the fact of possible coupling between the quasi-S waves (see, for example,
Coates and Chapman, 1990). Numerical studies comparing the ray solutions
with the exact solutions in anisotropic structures are very rare up to now.
In this context, the paper by Bulant et al. (2004) has to be mentioned.

For the reader’s convenience, let us close this chapter by summarizing
briefly the most common situations in which the ray theory may fail. A
more detailed discussion can be found in the Červený’s book (2001).

• Fine layers are present in the model (Fig. 35a), which are too thin
with respect to the wavelength. The RM validity conditions are not
fulfilled. If a stack of thin layers appears in the structure, the situa-
tion is even more complicated due to the increase of relevant multiply
reflected/transmitted waves, mutually interfering. The RM is com-
pletely inadequate to handle such a case. Matrix or other related
methods should be used instead.

• Regions of high-velocity gradients in the model (Fig. 35b). Rays can
be formally passed through without difficulties, but the ray solution
could be inaccurate.

• Objects (blocks) with dimensions smaller or comparable to the wave-
length are situated inside the model (Fig. 35c). If the objects are even
much smaller in dimensions than the wavelength under consideration
they act as scatterers. The scattered wavefield, however, cannot be
calculated by the standard RM.

• Edges and vertices in interfaces (Fig. 35d and also Figs. 1 – 3) com-
plicate the situation for several reasons. First, the normal to such an
interface cannot be uniquely defined on the edge or vertex, so that
the ray calculation cannot continue after incidence at such a point of
the interface. Further, such interface features form shadow zones be-
yond them. The ray wavefield does not penetrate into the shadows.
Moreover, the shadow boundary represents a singularity in the model.
Finally, the edges (vertices) are usually the source of diffracted waves
which are not treatable by the standard RM.

• Layer unconformities in the structure, especially the angular uncon-
formities (Fig. 35e), where the beds beneath such an unconformity
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are not parallel with those above, and the nonconformities that are
usually between overlying stratified sediments and underlaying unbed-
ded rocks. These features introduce edges (vertices) into the layer
boundaries and form shadow zones. Moreover, close to the tip of an
unconformity the layer thickness approaches zero. An example of such
unconformities and their effects on the ray wavefield can be seen in
Figs. 1 – 3.

Figure 35: A sketch of structural features possibly making the
RM inapplicable.

• Basins and reservoirs (Fig. 35f) as well as lens-shaped rock bodies in-
side the model are the structures producing mutually interfering mul-
tiply reflected waves. In such situations, where strong interference
effects are a consequence of superposition of a large number of ele-
mentary waves, the RM may fail or, at least, its application becomes
cumbersome. Similarly to the layer unconformities mentioned above,
the thickness of the filling approaches zero at the ends of such struc-
tures.

• Presence of interfaces with large radii of curvature (with respect to the
wavelength) clearly does not meet the RM validity conditions. Typi-
cally, caps of dome-like structures represent examples of such interfaces
(Fig. 35g). Rays interacting with such an interface can be formally
traced without problems, but the calculated ray synthetic wavefield
could be very inaccurate.

• The model contains higher-order interfaces, i.e. the interfaces with
step discontinuity of derivatives of medium parameters while the pa-
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rameters themselves remain continuous across the interface (Fig. 35h).
Such interfaces are often introduced formally by inappropriate (e.g.,
piecemeal) approximation of the model. This is why a spline inter-
polation is preferred over a linear interpolation to approximate the
model (see Sec. 6.1). The rays and travel times of the waves reflected
or transmitted at such interfaces of higher order can be computed in
a standard way. However, since the corresponding waves are higher-
order waves (similar to head waves) their amplitudes provided by the
standard zero-order RM may be completely wrong.

• Rays incidenting overcritically at an interface in the model. In the
case of an overcritical incidence, the slowness of some of the generated
waves is complex-valued (which corresponds to inhomogeneous waves).
Tracing of the corresponding rays has to be stopped since the RM is
not able to handle inhomogeneous waves. The rays of the generated
waves with real-valued slownesses can be calculated, but the carried
wavefield is singular in the vicinity of the critical region. The am-
plitude may depart considerably from the exact solution (see Figs. 3
and 25) beyond the critical point. The waveform shape of the relevant
reflection or transmission, predicted by the RM as a linear combina-
tion of the input signal and its Hilbert transform, does not include a
head wave contribution which may be significant and coming at nearly
the same time as the reflection/transmission in a close vicinity of the
critical point.

• Rays tangent to an interface locally or globally (the grazing rays). A
ray locally tangent to a smooth interface can be easily traced. How-
ever, the wavefield in the vicinity of such a ray is singular beyond
the point at which the ray touches the interface. Beyond this point
a shadow zone is usually formed between the ray and the interface
and the ray itself becomes a boundary ray separating the shadow and
the illuminated region. The standard RM is not capable of handling
any waves penetrating to the shadow (for example, smooth interface
diffractions). It may happen also that a ray is globally tangent to an
interface (e.g., in the case of a plane interface and straight line rays)
like, for example, the transmitted ray for a critical incidence. Such
a wave would generate head waves the rays of which (containing a
segment tangent to the interface) could be formally traced but their
amplitudes cannot be computed by the standard zero-order RM as the
waves belong to the class of higher-order waves.

• Rays form Caustics. The standard ray theory predicts infinite am-
plitude at a caustic point. In a vicinity of the caustic the wavefield
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is anomalous and its ray amplitude is not reliable. In space, caustic
points are not isolated, they form what is called the caustic surface
(ray field envelope). See, for example, CC1 and CC2 in Fig. 16. On
one side of a caustic surface a caustic shadow zone is created into
which the ray theory wavefield cannot penetrate (in contrast to the
real wavefield). To summarize, the ray wavefield is singular while the
real wavefield is finite and smooth in the vicinity of a caustic.

• Chaotic behavior of rays. Multiple scattering by irregularities of the
model gives rise to ray chaos. Where the chaos exists, the calculation
of ray paths is extremely sensitive to the initial conditions, and the
number of ray paths connecting two points grows rapidly with the
distance separating the points. The chaotic rays diverge exponentially
despite having originally been close to each other. Such a behavior
of rays can be described by the so-called chaos theory (Ott, 1993).
The chaotic-like-behavior is reasonable to expect in complex models,
characterized by multiply reflecting features of interfaces and refractive
ray-trapping medium properties. However, it can be observed as well
in much simpler structures (compare the well known ‘billiard-table’
problem).

• Quasi-shear wave coupling in anisotropic media. The standard RM
cannot be used when the qS1- and qS2-waves are coupled (their phase
velocities are close to each other). This can happen either globally,
in a weakly anisotropic medium (close to isotropic), or locally, in the
vicinity of quasi-shear wave singular directions.
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8 Computer program ZRAYAMP

The program ZRAYAMP is designed for fast computation of body-wave
ray travel times and amplitudes in spherically symmetric, radially inhomo-
geneous, isotropic media. Arose from the program ZESY82 (Červený and
Janský, 1985) it has been modified by J. Janský. It is written in FOR-
TRAN77 programming language. It utilizes several routines and algorithms
adopted from the SEIS81 program package, designed for the computation of
ray synthetic seismograms in 2D laterally varying structures (Červený and
Pšenč́ık, 1984, 2002). The program intrinsically utilizes the Earth flattening
transformation, see Sec. 3.3.

The program is suitable to demonstrate certain features of the RM, ex-
plained in these course notes. Despite it only performs calculations in 1D
models, running the program and creating input data for it may help the
reader to understand better some practical aspects of the method. It also
allows the reader to easily compare the results with the results yielded by
other methods, applicable possibly in less-dimensional media only. However,
the program is not presented here only as a suitable training tool for com-
puter exercises. It can be used for calculations in certain global seismological
problems on the spherically symmetric Earth. For example, it has been ap-
plied to obtain P -wave amplitudes and dynamic strains inside the Earth
(Duda et al., 2000). Nevertheless, for more complex models, another ray
tracing programs must be employed. For example, for 2D isotropic laterally
varying structures, the above-mentioned program package SEIS81 is widely
used. For 3D models, the CRT program has been developed (Červený et al.,
1988). I. Pšenč́ık has developed the well-known program ANRAY for ray
calculations in 2D anisotropic media (http://sw3d.mff.cuni.cz).

8.1 Brief description of the program

The program reads in data describing the 1D structure in which the ray
calculations are to be performed. The structure is specified using the Carte-
sian coordinate x3 (depth, in km), increasing downwards. It is bounded
from above by the Earth’s surface (x3 = 0) and from below by the bottom
of the model. The velocity distribution is specified at n gridpoints xi

3, start-
ing from the gridpoint x1

3 = 0, corresponding to the surface of the Earth.
At these gridpoints, the velocity is either continuous, or continuous with
discontinuous first derivative (interface of the second order), or discontinu-
ous (first-order interface). In the last mentioned case, two velocity values
must be specified at such a gridpoint xi

3: one just above the interface and
the second immediately below it. The velocity between individual inter-
faces is approximated by the smoothed splines. More specifically, instead
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of the velocity-depth distribution v = v(x3), the function x3 = x3(v) is ap-
proximated as x3 = aj + bjv

−2 + cjv
−4 + djv

−6 for the depths between two
successive grid points xj

3 ≤ x3 ≤ xj+1
3 . The coefficients aj, bj, cj and dj are

calculated using the cubic spline algorithm. This spline interpolation pro-
cedure guarantees continuity of the first and second derivatives of velocity
and does not generate false low-velocity layers (oscillations in the velocity-
depth function). The spline smoothing algorithm may slightly change the
gridpoint depths (xi

3), except the depths of the structural interfaces which
are fixed.

The model is further determined by several parameters specifying the
ratios of the S- and P -wave velocities within individual layers and densities
above and below each interface (densities inside layers are of no relevance
for calculating rays as well as ray amplitudes). Optionally, the program
allows to specify quality factor in order to describe attenuation. Note that
in dissipative media, rays as well as eikonals should be complex-valued. The
program does not compute complex rays and attenuation is introduced by
applying the so-called t∗-approximation (see, e.g., Duda and Yanovskaya,
1993). Note that attenuation results in the form of the ray solution which
is in conflict with its original ansatz. The problems of attenuation and the
corresponding dissipation filters are beyond the scope of this book.

The program is designed to calculate rays radiated from a point source.
The source position is specified by the Cartesian coordinates xS

1 (horizontal
coordinate, increasing from the left to the right) and xS

3 (depth, increasing
downwards). The point source may be situated at any depth, except the
depths corresponding to the first-order structural interfaces. It can be situ-
ated also at the Earth’s surface. The xS

1 coordinate may be arbitrary, but
the receiver positions must be specified properly with respect to the given
epicenter. There are two options for the radiation function: either omnidi-
rectional or a double-couple. The omnidirectional radiation for S-waves is
three times larger in magnitude than that for P -waves. The double couple
source is characterized by the seismic moment, strike, dip and rake (for def-
initions see Aki and Richards, 1980). At the source point, density must be
specified.

The receivers may be distributed regularly or irregularly along the Earth’s
surface. Their positions are specified by horizontal distances xRj

1 (in km) or
simply by the distance of the first receiver (the closest to the epicentre) and
step in their spacing. The receivers must be situated to the right from the
epicenter, i.e. xRj

1 ≥ xS
1 . The epicentral distance of j-th receiver is then

xRj
1 − xS

1 . The epicentral distances of the successive receiver must grow or
decrease monotonically (they form a monotonic sequence).

Each elementary wave under consideration is defined by the numerical
code of the wave. The codes can be specified manually (in input data) or they
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can be generated automatically by the program. The ZRAYAMP program is
able to generate automatically only the codes of direct (refracted), primarily
reflected monotypic P - and S- waves, and primarily converted waves at the
reflection point. The code is defined in the same way as it is explained in
Sec. 6.1 (Step 2). The whole ray is divided into elements, each of which
lies between two successive points at which the ray strikes the interfaces.
If the end points of such an element lie on different interfaces, it is called
a simple element. When the end points lie on the same interface (in the
case of refracted waves), it is called a compound element. Any compound
element is formally regarded as two simple elements. Thus, the refracted
waves corresponding to rays with a turning point in certain layer are not
distinguished by the code itself from the wave of the same type reflected
from the bottom of the given layer.

The program reads in the range of ray declinations (measured in radians
clockwise from the Earth’s surface to the tangent to the ray at the source)
covering the region of interest. This means that the angles have to be speci-
fied in such a way that the corresponding rays can reach the specified region
(for example, set of receivers). The angle range may also be used to separate
the refracted wave from the reflected one, having the same numerical code.
Further, the step in ray declinations has to be given.

For the elementary waves specified, rays are calculated either by the so
called initial-value ray tracing (with regular step in the ray declination) or by
the two-point ray tracing (rays terminating at specified receivers) in which
case the shooting method is employed. The shooting method determines
the ray parameter p, see Sec. 3.3, of a successful ray (the ray captured at
a given receiver). The step in declinations is used only for initial trials in
such a case; the actual declination ψ of the successful ray is related to the
ray parameter p of the ray as p = | cosψ|/v, with v being either the P -
wave velocity α, or the S-wave velocity β. Note that in 1D media the ray
parameter is preserved along the whole ray as it is shown in Sec. 3.3.

In the shooting algorithm, special care must be devoted to certain singu-
lar regions. Difficulties may arise in the vicinity of shadow zones or in those
parts of the ray field which are characterized by multiple arrivals of the given
elementary wave (multipathing). Problems can appear also in critical region
(for angles of incidence close to the critical angle). For example, the rays of
slightly refracted (transmitted) wave are very sensitive to the initial decli-
nation there. The shooting procedure itself is algorithmically very robust to
handle many peculiar features of the ray field (reverse branches, shadows,
etc.).

In the program ZRAYAMP, the rays are not traced in the standard way,
i.e. solving numerically the RTS. Thanks to the 1D character of the model
and the special approximation of the velocity distribution inside layers (be-
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tween structural interfaces), it is possible to find analytically an increment
in the horizontal coordinate xi

1, corresponding to each depth level xi
3, for

any ray with the given ray parameter p. The same holds for travel time
increments as the ray passes through individual depth levels. The geomet-
rical spreading at the ray endpoint, necessary to determine amplitude from
the continuation formula, is also given analytically in our case. This makes
the computations very fast. The calculations are performed in Cartesian
geometry, in which also the input data must be given, and the results are
transformed to those corresponding to the spherical geometry using the EFT.

For each ray and each depth level xi
3, the program returns the angular

distance, measured from the vertical passing through the epicentre, travel
time and vertical amplitude (modulus) at the corresponding ray point. In
addition to this, all the three amplitude components (moduli and phases)
are stored at the ray endpoints. These data are written in a simple ASCII
form and can be processed further by user supplied auxiliary programs for
plotting, convolution with the relevant source-time function, etc.

Detailed description of the structure of the input and output data is
given in Sec. 8.2. Sec. 8.3 provides several solved numerical examples. The
program, its description, input data and results for the numerical examples
can be found on the attached CD.

8.2 Input and output data

The program reads one input and generate two output files. The structure
of the input data ZRAYAMP.DAT is as follows:

1: TEXT — one line, format (A80)
Arbitrary alphanumeric comment on the model.

2: K2, MPRINT, KX — one line, free format

K2 Controls the extent of calculation.

K2 = 1 travel times only.

K2 = 2 calculation of arrival times, amplitudes and phase
shifts (i.e., the quantities needed to compute the
elementary impulse seismograms).

MPRINT Controls the printout of the description of the model in the output
file ZRAYAMP.OUT.

MPRINT = 0 only input data are printed.
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MPRINT = 1 input data and list of subintervals of depths to-
gether with the relevant parameters are printed.

MPRINT = 2 printout as for MPRINT = 1, plus velocity-depth
distribution.

KX Controls the type of ray calculations.

KX = 1 Two-point ray tracing (necessary for the calculation
of synthetic seismograms).

KX = 2 Initial-value ray tracing. In this case data in 6 have
no influence, but must be formally given in harmony
with parameter MEP - see 5).

3: H(I), A1, VU(I), D1, E, SREL, REL(I), QF(I) — set of lines, free format
System of data for individual grid points of the model - one line for one grid
point.

H(I) Depth of the grid point [km]. This value can be slightly changed
in the process of smoothing the velocity-depth distribution, with
the exception of the interfaces. H(1) = 0.

A1 A1 = 0 No velocity jump occurs at the grid point. The first
and second derivatives of the velocity are smooth at
this grid point. Put A1 = 0 for the Earth’s surface.

A1 = 100 Interface of the second order (the velocity is smooth
but not its derivative).

0.1 < A1 < 99 Interface of the first order. A1 then gives the P ve-
locity immediately above the interface. The quan-
tity VU(I) then represents the velocity immediately
below the interface.

VU(I) P -wave velocity at the grid point (from bellow) [km/s].

D1, E Densities immediately above and bellow the interface [g/cm3].
Put D1 = E = 0 if A1 = 0 or A1 = 100 with the exception of the
Earth’s surface where D1 = 0 and E is given.

SREL The ratio of the S and P velocities from above at the grid point.
Put SREL = 0 if A1 = 0 or A1 = 100.

REL(I) The ratio of the S and P velocity at the grid point (from below).
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QF(I) Quality factor for the P -waves between two grid points. Quality
factor for S-waves = 2.25QF(I). For QF = 0 no attenuation is con-
sidered. The frequency dependence of the attenuation is applied
in the program in the way that the TSTAR (integral along the ray
from the source to the receiver from 1/(velocity×quality factor))
is multiplied by 0.6366atan(1.5923/FHZ). (FHZ see bellow.)

The last grid point of the model is considered as the first-order interface.
Termination of the input of model: 8 numbers in free format, the first should
be equal to -1.

4: OD, TDD. — one line, free format
Controls the application of the smoothed spline algorithm to the depth-
velocity distribution.

OD Degree of smoothing of the depth-velocity distribution by splines
[km]. Higher accuracy (lower smoothing) is obtained for smaller
OD.

TDT Absolute value of the step in variable 1/v2 [(km/s)−2] for computa-
tion and print of the tables of the depth-velocity distribution (actu-
ally the depth - 1/v2 distribution). This distribution is calculated
for each layer independently. If TDT < 0.0001, the depth-velocity
distribution is not calculated even for MPRINT = 2. The depth-
velocity distribution is not printed for a layer with the constant
velocity. TDT has no meaning for MPRINT < 2.

5: ICONT, MEP, MOUT, IBP, IBS, IDP, IDS, IREAD, MPSOUR, ITMAX,
NLAY — one line, free format

ICONT Controls the continuation of the computation.

ICONT = 0 termination of the computation. Last line in input
data.

ICONT = 1 computation continues, line 6 follows.

MEP ABS(MEP) — the number of receiver positions, 1 < |MEP| < 100.
The sign of MEP controls the way in which the system of receiver
positions is specified.

MEP > 0 The receivers are distributed regularly along the
profile. Only the position of the first receiver and
the step in the xR

1 -coordinate are read - see 6).
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MEP < 0 The receivers are distributed irregularly along the
profile. The xRi

1 -coordinates of all receiver positions
are read in 6.

MOUT Controls the print of results on the screen. The input data are
always reproduced. The printout then continues as follows:

MOUT = 0 Only the codes of generated waves are printed.

MOUT = 1 Elementary impulse seismograms (with the xRi
1 -co-

ordinate of the receiver) and external wave codes
are printed.

MOUT = 2 More detailed print that allows to monitor the cal-
culation.

IBP-IBS Switches which control the automatic generation of numerical codes
of elementary waves. Only direct, refracted and primarily reflected
waves (possibly converted at the point of reflection) can be gener-
ated automatically.
IBP controls the automatic generation of refracted and primarily
reflected waves for a P -wave source.

IBP = 0 No refracted and primarily reflected waves are gen-
erated.

IBP = 1 PP refracted and PP primarily reflected waves are
generated.

IBP = 2 PS primarily reflected waves are also generated.

IBS controls the automatic generation of refracted and primarily
reflected waves for a S-wave source.

IBS = 0 No refracted and primarily reflected waves are gen-
erated.

IBS = 1 SS refracted and SS primarily reflected waves are
generated.

IBS = 2 SP primarily reflected waves are also generated.

IDP controls the automatic generation of the direct P -wave (upwards
from the source).

IDP = 0 Direct P wave is not generated.

IDP = 1 Direct P wave is generated.
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IDS controls the automatic generation of the direct S-wave.

IDS = 0 Direct S wave is not generated.

IDS = 1 Direct S wave is generated.

IREAD Controls the manual generation of numerical codes of elementary
waves.

IREAD = 0 No numerical codes are generated manually.

IREAD = 1 Numerical codes of certain elementary wave are man-
ually generated, see line set 10.

MPSOUR Controls the source radiation pattern.

MPSOUR = 0 The radiation pattern does not depend on the ray
parameter (isotropic radiation).

MPSOUR = 7 Double-couple radiation pattern applies for both
P - and S- waves.

ITMAX Number of iteration permitted in the determination of the ray pa-
rameter in two-point ray tracing (maximum 99). If ITMAX = 0,
then ITMAX = 20.

NLAY Controls the generation of the numerical code of the waves that
propagate in the last layer (if IBP > 0 and/or IBS > 0).

NLAY = 1 The waves are not generated.

NLAY = 0 The refracted P - and S- waves in the last layer are
generated. The waves reflected and possibly con-
verted at the bottom of the model are not com-
puted. Thus, in the computation the last layer rep-
resents a vertically inhomogeneous halfspace.

6: Specification of receiver positions along the surface of the Earth.

MEP > 0 RMIN, RSTEP [km] — one line, free format
The receivers are distributed regularly along the profile. The xRi

1

coordinate of the i-th receiver is given by the formula DST(I) =
RMIN + RSTEP*(I-1). Take RSTEP > 0!

MEP < 0 DST(1), ..., DST(ABS(MEP)) —- one line, free format
DST(I) gives the xRi

1 -coordinate of the i-th receiver. The receivers
may be distributed irregularly along the profile. Take the receiver
positions from left to right so that DST(I) > DST(I-1) for any I.
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7: XSOUR, ZSOUR, TSOUR, REPS, ROZD, FHZ — one line, free format

XSOUR The xS
1 -coordinates of the source [km].

ZSOUR The xS
3 -coordinate of the source [km], ZSOUR ≥ 0. ZSOUR must

not be equal to depth H(I) of any of the first-order interfaces (with
exception of the Earth’s surface).

TSOUR Initial hypocentre time [s].

REPS The required accuracy [km] in the two-point ray tracing. If REPS
= 0, then REPS = 0.05km.

ROZD Density [g/cm3] at the source.

FHZ Frequency of waves [Hz] used in calculation of the attenuation. Put
FHZ = 0 if attenuation is not considered (QF=0, see line 3).

8: PPAR(1), PPAR(2), PPAR(3), PPAR(4) — one line, free format
Double couple source parameters (see Aki and Richards). Given only if
MPSOUR = 7. If MPSOUR6=7, isotropic source is supposed. In this case
the amplitude radiated as the S-wave is three times larger than the P -wave
amplitude.

PPAR(1) Dip [rad]

PPAR(2) Seismic moment Mo [109 Nm], then displacement in µm.

PPAR(3) Strike [rad]

PPAR(4) Rake [rad]

9: AMIN1, ASTEP1, AMAX1, AMIN2, ASTEP2, AMAX2 — one line, free
format
Control the basic system of initial angles in the determination of the param-
eter of rays in the shooting method.

AMIN1,ASTEP1,AMAX1 Minimum ray declination, declination step, and
maximum ray declination. The values determine the system of
initial angles [rad] for refracted, primarily reflected and converted
waves generated automatically and for other manually generated
elementary waves, the first element of which propagates from the
source downwards.
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AMIN2,ASTEP2,AMAX2 Minimum ray declination, declination step, and
maximum ray declination. The values determine the system of ini-
tial angles for refracted, primarily reflected and converted waves
generated automatically and for other manually generated elemen-
tary waves, the first element of which propagates from the source
upwards. In both cases the parameters represent the initial value,
the step and the end value of the angle [rad]. The ray with initial
angle equal to zero emerges from the source parallelly with the
x1-axis in the direction of increasing x1. The following conditions
must be generally fulfilled: 0 ≤ AMN1 < AMX1 ≤ π, ASTEP1 >
0 and 0 ≥ AMIN2 > AMAX2 ≥ -π, ASTEP2 < 0. For MPSOUR
= 7 (see 5)) value π is replaced by π/2.

10: KC, KCA, JC(1), ..., JC(KCA) — set of lines, free format
Manual generation of numerical codes of elementary waves. Given if IREAD
= 1. For each code the following data must be given.

KC KC = 1 The ray propagates from the source downwards.

KC =-1 The ray propagates from the source upwards.

KCA The number of segments of the ray. KCA < 100.

JC(I) ABS(JC(I)) gives the ordinal number of the layer where the i-th
physical element of the ray is situated. JC(I)> 0 : P -wave element,
JC(I) < 0 : S-wave element. I = 1, 2, ..., KCA.

The last line for the whole set must contain 3 zeros (the indication of the
end of the elementary code list).

The program generates two outputs. The output file ZRAYAMP.OUT is
partly of an informative character. It allows the user to check whether the
input data have been read in correctly and provides information about the
calculation. Possibly, the reasons why the calculations had to be stopped are
given. Optionally, for MOUT=1 (see 5 in ZRAYAMP.DAT), it provides the
resulting travel times and amplitudes at the ray endpoints. The structure is
as follows:

1. Input data are always printed under appropriate heading.

2. Approximation of the model. The extent of the printed data depends
on the value of MPRINT, see the input data, line 1
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Figure 36: An example of the input data file. Circles denote the most
frequently changed switches controlling the computation.

if MPRINT = 1 The division of the medium into layers and parameters
of the depth-velocity distribution in individual layers are printed
under the heading: V (P velocity), 1/V**2, HZ (input grid depth),
H (smoothed grid depth used in further computations), A, B, C, D
(coefficients of the depth- velocity distribution), I (ordinal number
of the grid point).

if MPRINT = 2 The same output as for MPRINT = 1 plus data on the
depth-velocity distribution under the heading: V, 1/V**2 (with
step TDT and independently for each layer), H, HV/DH (deriva-
tive of the P -wave velocity with respect to depth). The position
of each first-order interface is marked by a row of asterisks.

3. Output for individual waves for a given set of input data 5-10.

if MOUT = 0 Internal wave codes (consecutive numbers of the wave in
generation of the numerical codes) and external wave codes (pa-
rameters KC, KCA and JC(I), I = 1, 2, ..., KCA).

if MOUT = 1 Also coordinates of the receivers, corresponding arrival times,
horizontal and vertical amplitudes and phase shifts of the displace-
ment vector. For KX = 2 the first number in the line corresponds
to the value of the initial angle of the ray (the one from the basic
system of initial angles - see 8) ). For KX = 1, the ray angle (ob-
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tained by iterations in two-point ray tracing) is given as the last
number in the line.

if MOUT = 2 The output is completed by certain results of iterations in the
process of determining the ray parameter in the shooting method.
These are:

- IND, XO, AA - for each endpoint of the ray in the basic system
of rays.

- IND, ITER, DD, XO, PNEW - for each endpoint of the ray in
the iterations to the receiver position.

- IND, ITER, XO, PNEW - for each endpoint of the ray in it-
erations for some special rays. Examples are the
boundary rays between the shadow and illuminated
regions (labeled SH), the critical rays (labeled CR)

The meaning of individual symbols:

XO - x1-coordinate of the endpoint of the ray.

DD - x1-coordinate of the receiver. It should not differ from XO by
more than the shooting tolerance REPS (see 7 in ZRAYAMP.DAT)

ITER - The successive number of the iterations.

AA - Initial angle in the basic system of the initial angles.

PNEW - Initial angle of the ray, in iteration to the receiver positions.

IND - Reason of the termination of the ray calculation:

IND = 3 The termination point is situated at the surface of
the medium (successful ray).

IND = 9 Overcritical incidence at an interface where the nu-
merical code of the wave requires a transmission.

IND = 14 The ray specified by the manual generation of the
code does not exist in a given model.

IND = 18 The ray turned downwards by refraction in the first
layer whereas it should reach the surface of the
medium.

IND = 19 The deepest point of penetration of the ray in the
ray in the refraction occurs exactly at the boundary
of the layer.
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IND = 20 Required conversion of the wave is not possible be-
cause a refraction occurs at the deepest point of
penetration of the ray instead of a reflection.

The output file ZRAYAMP.RES contains the results of ray calculations
for all rays point-by-point. The system of data for individual ray points is:

DELTA(I), Z(I), T(I), STRAIN(I), AMPZ(I)

DELTA(I) - angle distance of the i-th point in degrees

Z(I) - depth of the point in km

T(I) - time at the point in sec

PHASEZ(I) - phase of the amplitude at the point

AMPZ(I) - modul of the amplitude of the vertical displacement
component at the point (the amplitude includes radia-
tion pattern, geometrical spreading, R/T coefficients and
coefficients of conversion if the point is situated at the
free surface)

The end of ray is indicated by the line:
9000.000000 9000.000000 9000.000000 9000.000000
9000.000000
After this, data for a new ray follow.

8.3 Numerical examples

All the following examples including complete input/output data and figures
can be found on the attached CD in separate directories.

Example 1 – Model 1

The first example illustrates ray propagation in relatively complex struc-
tural model consisting of four inhomogeneous layers, separated by interfaces
with jumps in velocities. The model is based on the PREM model, however
it is much simplified. Fig. 37 shows the model in terms of velocity-depth
distribution (part a) and the corresponding part of the input file (part b).
The source is located in the forth layer. It represents an explosive source,
i.e., it radiates only P -waves and the radiation is isotropic (the same in all
directions). The considered elementary waves are direct P -wave (going up
from the source) and refracted/reflected P -waves in the forth layer. The
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numerical codes of elementary waves under consideration are generated au-
tomatically. Initial-value ray tracing is used, so that the ray endpoints are
spaced irregularly. In this case the receiver positions are of no relevance,
although at least one receiver has to be formally specified in the input data.
The ray diagram is shown in Fig. 38. Fig. 39 shows the travel times and
vertical amplitudes at the ray endpoints. In this example all the ray ampli-
tudes are real-valued. Note the later arrivals and lower amplitudes of the
reflected wave.

Figure 37: Model 1: Velocity-
depth distribution (a) and the cor-
responding input data (line set 3)
(b).

Example 2 – Model 1

Here we adopt the same structure model as in the previous example. The
source is situated at the surface and it represents a double couple with
strike of 0.8rad, dip of 1.57rad and rake of 0.8rad. Only the following ele-
mentary waves are taken into account: S-waves refracted in the third and
fourth layer, and S-waves reflected from the bottoms of the second, third,
and fourth layer. The elementary wave codes are generated manually. The
wave refracted in the second layer, not differing in the code from the cor-
responding reflection, is excluded by restricting the range of allowed ray
declinations. Two-point ray tracing is applied assuming regular distribution
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Figure 38: Rays from the Example 1.

Figure 39: Travel times (a) and vertical displacement amplitudes (b) corre-
sponding to the ray endpoints from Fig. 38 (Example 1).

of receivers with the receiver spacing 600km. The rays (calculated by the
shooting procedure) are shown in Fig. 40. Fig. 41 shows travel times and
amplitudes at the receivers. Circles corresponds to the waves refracted in
the forth layer and reflected from its bottom (the waves analogous to those
considered in the previous example), while triangles correspond to the waves
refracted and reflected in the third layer and the waves reflected from the
bottom of the second layer (not considered in the previous example). When
comparing Figs. 41a and 39a (circles) we see similar hodochrons but longer
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Figure 40: Rays from the Example 2.

Figure 41: Travel times (a) and vertical displacement amplitudes (b) cor-
responding to the ray endpoints from Fig. 40 (Example 2). Grey triangles
indicate phases of the rays reflected from the bottoms of the second and
third layer.

travel times in Example 2. This is because of slower S-waves considered
in Example 2 (and longer raypaths due to the surface source location). A
relatively complicated amplitude behavior is mostly due to the strong direc-
tional dependence of the radiation pattern. A remarkable feature are the
complex-valued amplitudes due to overcritical incidence of the rays reflected
from the bottom of the second layer at the third receiver, and from the
bottom of the third layer at the forth and fifth receiver.
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Example 3 – Model 1

Figure 42: Rays from the Example 3.

Figure 43: Travel times (a) and vertical displacement amplitudes (b) corre-
sponding to the ray endpoints from Fig. 42 (Example 3).

In this example, the structure, source position, and the source type are
the same as in Example 1. The receivers are distributed regularly in the
same way as in Example 2. The codes of direct P -waves, their primarily
refraction/reflections and conversion from P to S at the fifth interface are
generated automatically. Figs. 42 and 43 shows the corresponding ray di-
agram, and time- and amplitude-diagrams, respectively. As expected, the
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converted waves have latest arrival times and smallest amplitudes. All the
amplitudes are real-valued.

Example 4 – Model 1

The fourth example is the same as the third one in terms of structure,
source and receivers. The only difference is in elementary wave specification:
instead of automatic generation of numerical codes the manual specification
is used to involve the P -wave primarily refracted/reflected in the fourth
layer and multiply reflected in the third layer (the codes are 4 3 3 3 2 1
and 4 4 3 3 3 2 1). These multiple reflections are considered here only for
illustration how to construct the corresponding elementary wave code, not
for their seismological importance. The resulting rays are in Fig. 44, travel
times and amplitudes in Fig. 45. All the amplitudes are real-valued. Note
that the amplitudes of the multiples are much lower than those obtained
in Example 3 for the waves primarily refracted/reflected in the fourth layer
(without the multiple reflections in the third layer) – compare Figs. 43b and
45b.

Figure 44: Rays from the Example 4.

Example 5 – Model 2

The last example illustrates the effect of a low-velocity zone in a smooth
gradient model. The zone is at depths from 600km to 1200km and it is not
separated by structural interfaces. The velocity structure is shown in Fig.
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Figure 45: Travel times (a) and vertical displacement amplitudes (b) corre-
sponding to the ray endpoints from Fig. 44 (Example 4).

Figure 46: Model 2: Velocity-
depth distribution (a) and the cor-
responding input data (line set 3)
(b).

46. An explosive source is located at the Earth’s surface. Since the model is
smooth, no reflections can be calculated. The only possible wave is the direct
P -wave — its numerical code is generated automatically. The receivers are
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regularly distributed along the Earth’s surface with the spacing 200km. The
two-point ray tracing is performed. Rays are shown in Fig. 47. In the figure,
the low-velocity zone is demarcated by two dashed lines (not representing
structural interfaces). The corresponding travel times and amplitudes at the
Earth’s surface are in Fig. 48. Grey points correspond to the arrivals with
phase shifts due to passage through caustics.

Figure 47: Rays from the Example 5.

Figure 48: Travel times (a) and vertical displacement amplitudes (b) corre-
sponding to the ray endpoints from Fig. 47 (Example 5). The ray endpoints
with phase shifts due to caustics are shown in grey.
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8.4 Troubleshooting tips

The following table presents several hints which can help the reader to solve
situations when the program does not function well, returns no results or
results which are obviously wrong. Neither the list of the problems, nor the
list of possible solutions is complete. The table provides only some of the
most frequently appearing situations.

PROBLEM POSSIBLE REASON SUGGESTED SOLU-
TION

At certain receivers, no
rays are captured.

The receiver is in a shadow
zone

None. The result is cor-
rect.

Accuracy required in the
shooting method is too
high.

Increase REPS.

Insufficient angular range
or angle step too high.

Check AMIN, AMAX,
ASTEP.

The receiver is situated to
the left from the source.

None. Rays can be traced
only to the right from the
source.

The sequence number of
the receiver is larger than
99.

Decrease the number of re-
ceivers. Maximum number
is 99.

More than one ray of the
given elementary wave ter-
minates at a certain re-
ceiver.

This may be correct in
certain situations (multi-
pathing).

None.

Angle step too small. Increase ASTEP.

The tolerance of captur-
ing the ray in the shooting
method is too high.

Decrease REPS.

The program does not re-
turn any ray of the given
elementary wave.

Insufficient angular range. Adjust AMIN and AMAX.

The first ray segment is
assigned by different num-
ber than that correspond-
ing to the layer in which
the source is situated.

Adjust the elementary
wave code.

Continued on the next page
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PROBLEM POSSIBLE REASON SUGGESTED SOLU-
TION

The elementary wave code
for rays radiated down-
wards from the source does
not contain the compound
element (related to the
turning point of the ray)

Adjust the elementary
wave code. The code must
contain doubled number
of the layer in which rays
turn upwards (similarly to
the case of reflected rays).

The number of ray seg-
ments in the elementary
wave code does not agree
with KCA.

Adjust KCA.

KC does not correspond to
the initial direction of the
ray.

Set KC=1 for rays going
downward from the source
and KC=-1 for rays going
upward from the source.
This should also be in cor-
respondence to the angular
range (AMIN,AMAX).

The elementary wave code
does not describe rays ter-
minating at the Earth’s
surface.

Adjust the code. The last
ray segment must be cod-
ded by 1.

The program returns ex-
actly same ray trajectories
both for P - and S-waves.

This may be correct for
monotypic waves (without
conversions) provided α/β
ratio is constant through-
out the whole structure.

None. The result is cor-
rect.

Reflections from the last
interface in the model are
not computed.

The program does not cal-
culate rays reflected from
the bottom of the model.

Add a line corresponding
to a formal layer below this
interface (like in Fig. 37b)

Sparse discretization of
rays.

Sparse discretization in the
velocity model (the rays
are computed only at the
depths of the model grid
points).

Refine the velocity model.
Note that the results are
correct even for the sparse
discretization, but prob-
lems may appear when
plotting such rays (for ex-
ample, the rays do not look
smooth in the vicinity of
their turning points).

Continued on the next page
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PROBLEM POSSIBLE REASON SUGGESTED SOLU-
TION

After the source location
has been changed, the pro-
gram stops computing any
rays.

Elementary wave codes do
not correspond to the new
source location (the source
is no longer situated in the
same layer as before).

Adjust the elementary
wave code. Also do not
forget to properly change
ROZD.

After the structure has
been changed, the program
stops computing any rays.

Elementary wave codes do
not correspond to the new
structure (missing layers
or new layers are present).

Adjust elementary wave
codes.

When problems with calculations (possibly not mentioned in the above
table) appear, it is always recommended to set MOUT=2 in ZRAYAMP.DAT
and check the file ZRAYAMP.OUT, especially the IND values indicating the
reasons why the calculation was not successful. However, if the output file
ZRAYAMP.OUT is to be used by the plotting routines included in the at-
tached CD, MOUT must be set equal to 1.
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Moczo, P., Bard,P.Y., and Pšenč́ık, I. (1987), Seismic response of 2-D
absorbing structures by the ray method. J.Geophys., 62, 38 – 49.

Moczo, P., Kristek, J., and Halada, L. (2004), The finite-difference
method for seismologists. An introduction, Comenius University, Brati-
slava (see also http://www.spice-rtn.org)
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Abbreviations

ART Asymptotic ray theory

BC Boundary conditions

DRT Dynamic ray tracing

EDE Elastodynamic equation

EE Eikonal equation

EFT Earth’s flattening transformation

FDM Finite difference method

P.V. Cauchy principal value

RC Ray coordinates

RCC Ray centered coordinates

RM Ray method

R/T Reflection/transmission

RTS Ray tracing system

TE Transport equation

WOC Wavefront orthogonal coordinates
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Selected notations

aijkl Density normalized elastic parameter
A Scalar ray amplitude of a linearly polarized wave (P, qP, qS1, or qS2)
b Unit binormal to a ray
B Scalar ray amplitude factor of the S-wave
c Phase velocity
C Scalar ray amplitude factor of the S-wave
cijkl Elastic parameter (elastic tensor component)
E Elastic energy
EW Strain energy
EK Kinetic energy
ei RCC basis vector
f Source-time function (real part of the analytic signal F )
f Body force per unit volume
F Analytical signal
F Fourier transform
G Eigenvalue of the Christoffel matrix
g Eigenvector of the Christoffel matrix (amplitude polarization vector)
G Radiation function
Gij Green’s tensor
h Heaviside step function
H Hamiltonian
H Transformation matrix from the RCC to the Cartesian coordinates
H Hilbert transform
i Imaginary unit
i Angle of incidence
ii Cartesian coordinate basis vector
I Fermat’s functional
J Ray Jacobian
K KMAH index (index of the ray trajectory)
kI Principal curvature of the slowness surface along the pI-axis
K Gaussian curvature of the slowness surface
l Length of the ray in homogeneous media (source-receiver distance)
L Lagrangian
L Differential operator in the ART EDE approximation (zero-order)
M Differential operator in the ART EDE approximation (first-order)
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N Differential operator in theARTEDE approximation (second-order)
n Unit normal to a ray
nS Unit outer normal to a closed surface S
nτ Unit normal to a wavefront
p Slowness vector (normal to the wavefront)
pν Slowness component normal to the interface
pΣ Slowness component tangent to the interface
p Ray parameter
P Transformation matrix from the RC to the slowness components
Q Point of incidence
Q Transformation matrix from the RC to the Cartesian coordinates
qi RCC coordinates
r Radius in the spherical or polar coordinates
R Receiver point
RR

ij Displacement reflection coefficient
RT

ij Displacement transmission coefficient
R Radiation pattern
< Real part
s Ray flow parameter (arclength)
S Source point
S Energy flux
dS⊥ Cross-sectional area of the ray tube
dS(τ) Vectorial surface element cut from the wavefront by the ray tube
dS(τ) Scalar surface element cut from the wavefront by the ray tube
S Relative geometrical spreading
t Time
t Vector tangent to the ray
T Torsion of the ray
T Traction
u General flow parameter along the ray
u Particle displacement
U Leading term amplitude (zero-order)
U1 Amplitude of the first-order term in the ray series
v Wave propagation velocity in isotropic media
vg Group velocity
vg Group velocity magnitude
x Position vector
xi Cartesian coordinate
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α P -wave velocity
β S-wave velocity
γi Ray coordinate (for i = I also ray parameter)
Γij Christoffel matrix
δ Dirac delta-function. Variance
δij Kronecker’s symbol
εij Strain tensor element
θ Colatitude in the spherical coordinates
ϑ Azimuth of the ray
λ Wavelength; Lamé elastic parameter
µ Lamé elastic parameter (rigidity, shear modulus)
ν Unit normal to a structural interface
ρ Density
σ0 Index of the source in anisotropic media
Σ Structural interface
τ Eikonal (travel time)
φ Longitude in the spherical coordinates
ϕ Rytov angle
Φ Angle between normal to the wavefront and tangent to the ray
ψ Declination of the ray
ω Circular frequency
Ω Reference ray
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